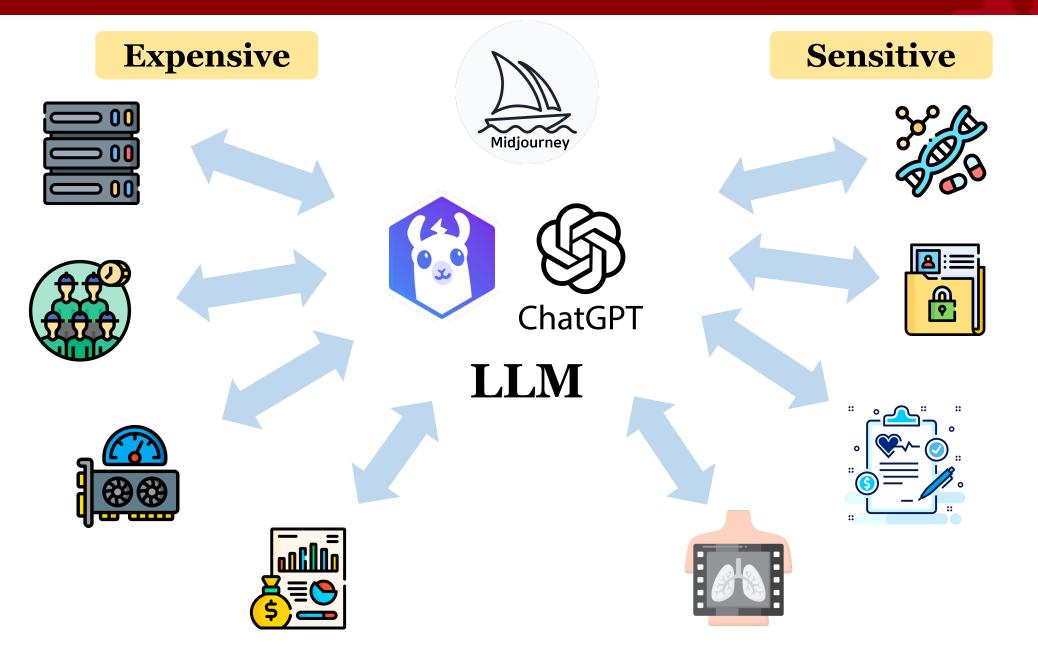


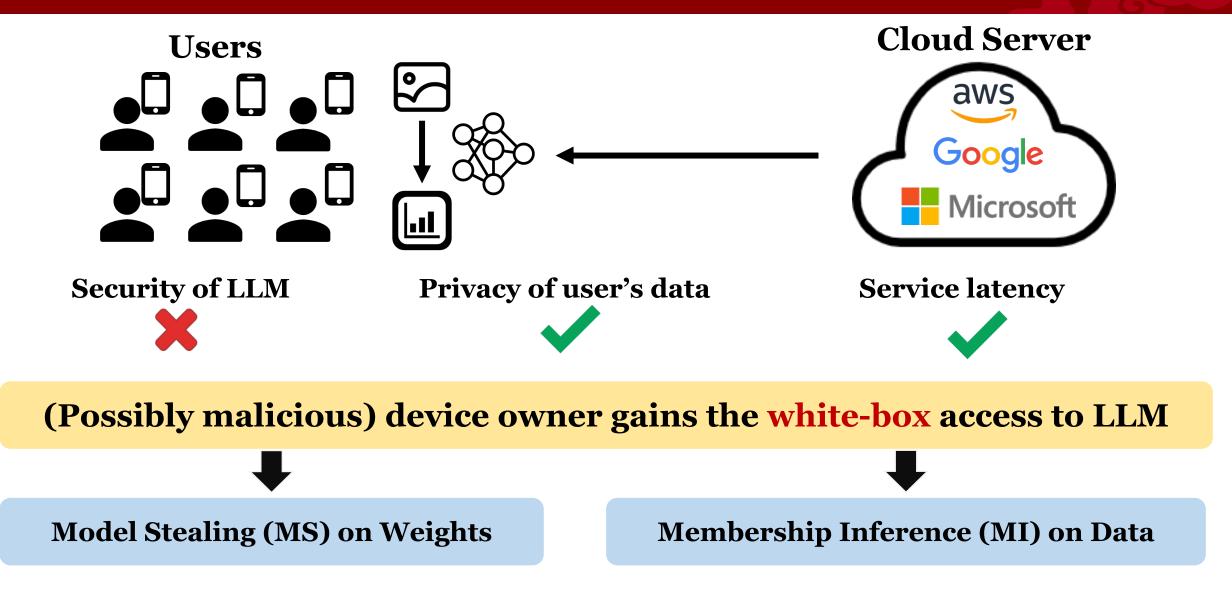
No Privacy Left Outside: On the (In-)Security of TEE-Shielded DNN Partition for On-Device ML

Ziqi Zhang, Chen Gong, Yifeng Cai, Yuanyuan Yuan, Bingyan Liu, Ding Li, Yao Guo, and Xiangqun Chen

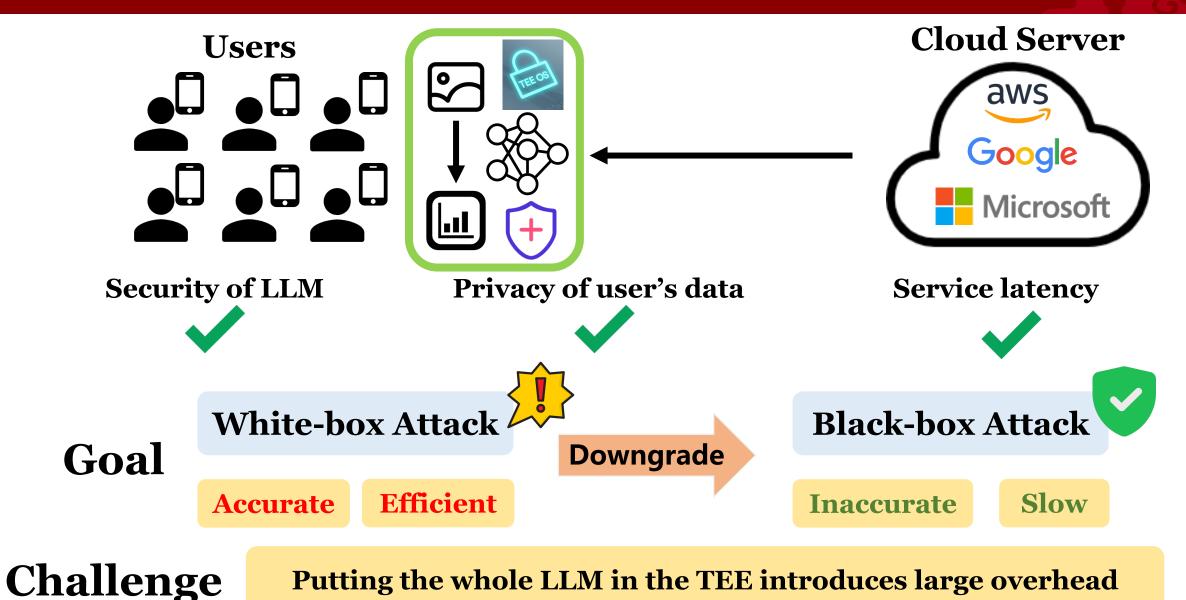
LLMs Are Expensive and Sensitive



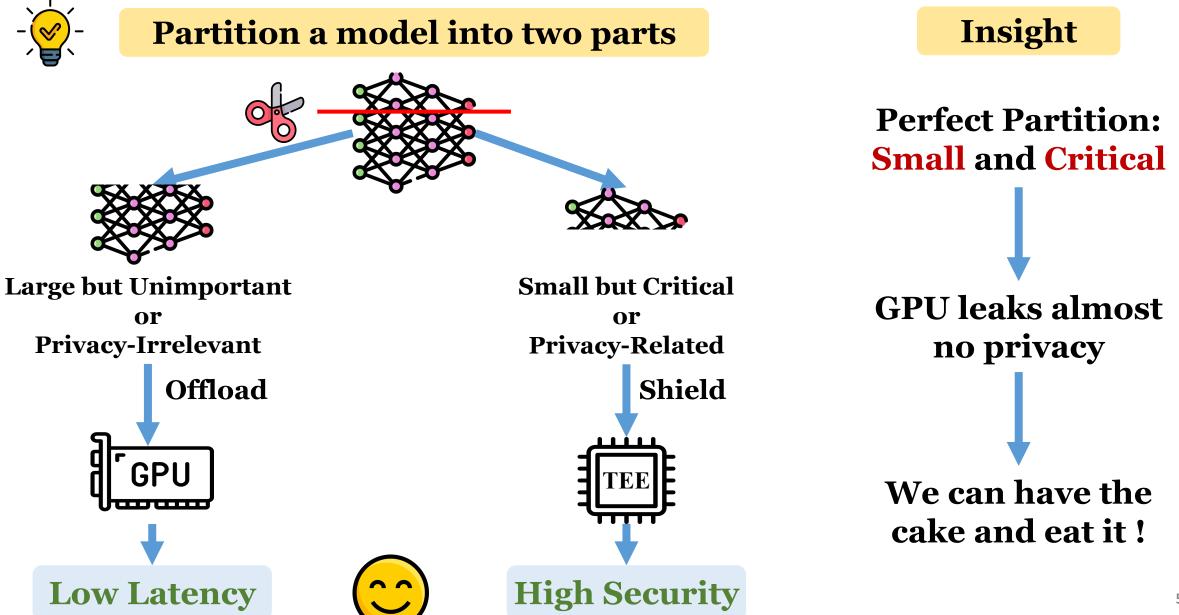
Security Issues of LLMs on Edge



Security Issues of LLMs on Edge

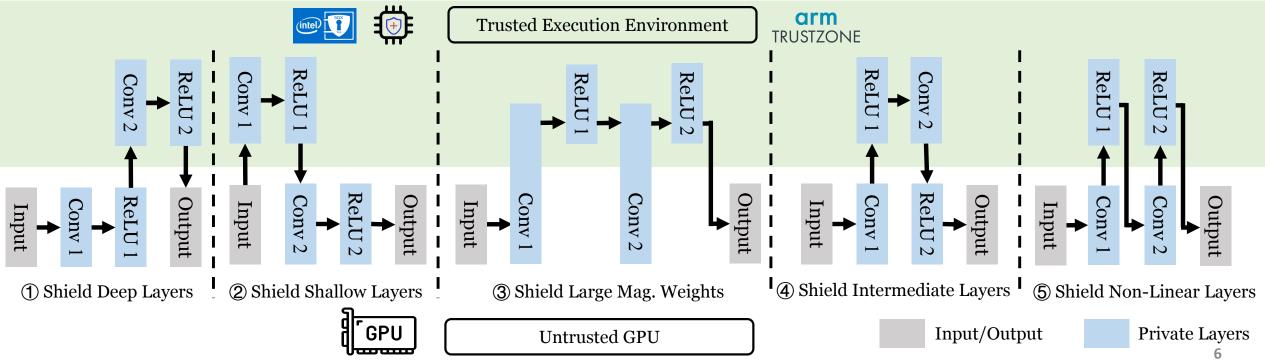


TEE-Shielded DNN Partition (TSDP)



Summarization of Existing TSDP Solutions

- 1 Shield Deep Layers [MobiSys'20, MobiSys'21, ASPLOS'20]
- ② Shield Shallow Layers [CCGRID'20]
- **③ Shield Large-Magnitude Weights [TDSC'22]**
- **④ Shield Middle Layers [RTSS'21, ATC'22]**
- **(5) Shield Non-linear Layers [S&P'23]**



Security of TSDP Solutions

Defense Evaluation: Empirical Surrogate-Model-Based Attack

Prior Conclusion

Attacker can not directly use the DNN part on GPU to perform attacks

Does this conclusion holds in the era of LLM?

The insights are based on empirical observation

Threat model may change

Evaluating Existing TSDP Solutions

• Stronger A	dversary	Comprehensive evaluation
Public	Model Weights	Model Functionality Model Stealing
Public	Data to Analyze	Training Data Privacy Membership Inference
 Baseline 		
Black-box	Lowest Utility	Highest Security
No-Shield	Highest Utility	Lowest Security
• Attack pipelin	TSDP	$\begin{array}{c} P_i \\ Surrogate Model \\ Initialization \end{array} \stackrel{M_{init}}{M_{odel}} \stackrel{M_{sur}}{M_{odel}} \stackrel{M_{sur}}{M_{embership}} \\ M_{sur} & M_{vic}'s Mem. \\ M_{vic}'s Mem. \\ \hline \\ Adversary's \\ Profit & \hline \\ Functionality & Membership \\ Functionality & Membership \\ Information & \hline \\ \end{array}$

Research Question 1

• How is defense performance of existing TSDP solutions in front of the two attacks?

Model Stealing ↓						Membership Inference ↓								
	No-Shield	①DarkneTZ	②Serdab	③Magnitude	SOTER	Ours	Black-box	No-Shield	①DarkneTZ	②Serdab	③Magnitude	SOTER	Ours	Black-box
T C10	83.72%	77.15%	63.58%	65.97%	76.90%	19.04%	24.38%	67.25%	57.67%	62.96%	52.67%	62.18%	50.00%	50.00%
Ž C100	56.60%	41.57%	46.48%	47.86%	50.83%	8.27%	10.68%	78.32%	63.27%	72.20%	71.31%	63.39%	50.00%	50.00%
S10	76.55%	75.17%	69.06%	73.67%	37.60%	24.15%	15.26%	64.77%	58.49%	61.51%	66.26%	59.72%	50.00%	50.00%
UTK	89.60%	88.74%	82.92%	86.65%	58.86%	52.27%	48.62%	62.97%	55.84%	55.43%	56.28%	55.52%	50.00%	50.00%
∞ C10	95.39%	87.55%	93.94%	89.92%	92.61%	31.40%	19.88%	68.98%	65.01%	66.59%	59.12%	52.67%	50.00%	50.00%
5 C100	79,77%	70.11%	78.01%	74.84%	79.28%	10.90%	15.41%	82.63%	81.10%	82.92%	67.55%	76.31%	50.00%	50.00%
S10	87.45%	86.03%	85.05%	77.08%	80.83%	29.19%	21.66%	76.09%	65.98%	74.22%	64.29%	59.83%	50.00%	50.00%
^T UTK	87.60%	85.65%	84.65%	64.99%	76.43%	51.95%	45.41%	62.87%	56.33%	59.25%	54.53%	51.69%	50.00%	50.00%
Z C10	91.83%	87.76%	91.34%	87.35%	81.52%	30.87%	14.62%	62.29%	64.03%	62.44%	58.63%	55.20%	50.00%	50.00%
C100 اي	72.78%	63.68%	72.19%	68.82%	66.06%	9.78%	10.93%	81.22%	78.63%	81.34%	71.25%	50.10%	50.00%	50.00%
ତ୍ର S10	89.58%	89.17%	89.33%	84.33%	89.46%	32.92%	18.97%	66.08%	68.20%	66.20%	66.97%	58.22%	50.00%	50.00%
ĕ utk	89.46%	87.60%	89.60%	90.28%	87.30%	48.37%	45.46%	58.73%	52.79%	58.48%	58.93%	51.34%	50.00%	50.00%
Average	4.26×	3.92×	4.03×	3.91×	3.76×	$1.23 \times$	1.00×	1.39×	$1.28 \times$	1.34×	$1.25 \times$	1.16×	$1.00 \times$	1.00×

Conclusion for RQ1

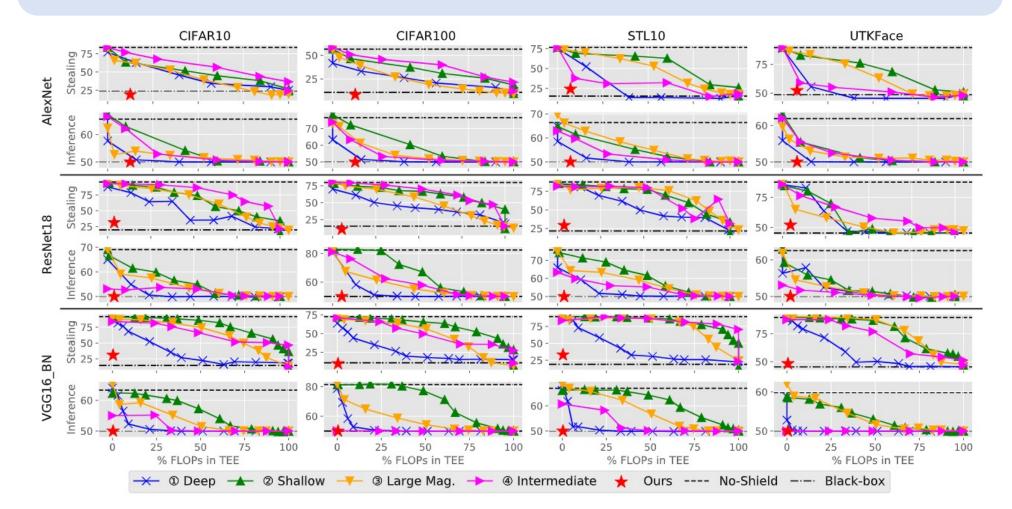
Defense effectiveness of existing TSDP is similar to white-box defense.

TEE only shields a little weights. The majority model part on GPU exposes a large amount of privacy.

Model Stealing \downarrow					Membership Inference ↓									
	No-Shield	①DarkneTZ	②Serdab	③Magnitude	④SOTER	Ours	Black-box	No-Shield	①DarkneTZ	②Serdab	③Magnitude	@SOTER	Ours	Black-box
T C10	83.72%	77.15%	63.58%	65.97%	76.90%	19.04%	24.38%	67.25%	57.67%	62.96%	52.67%	62.18%	50.00%	50.00%
Ž C100	56.60%	41.57%	46.48%	47.86%	50.83%	8.27%	10.68%	78.32%	63.27%	72.20%	71.31%	63.39%	50.00%	50.00%
GIS Ale	76.55%	75.17%	69.06%	73.67%	37.60%	24.15%	15.26%	64.77%	58.49%	61.51%	66.26%	59.72%	50.00%	50.00%
UTK	89.60%	88.74%	82.92%	86.65%	58.86%	52.27%	48.62%	62.97%	55.84%	55.43%	56.28%	55.52%	50.00%	50.00%
∞ C10	95.39%	87.55%	93.94%	89.92%	92.61%	31.40%	19.88%	68.98%	65.01%	66.59%	59.12%	52.67%	50.00%	50.00%
5 C100	79,77%	70.11%	78.01%	74.84%	79.28%	10.90%	15.41%	82.63%	81.10%	82.92%	67.55%	76.31%	50.00%	50.00%
S S10	87.45%	86.03%	85.05%	77.08%	80.83%	29.19%	21.66%	76.09%	65.98%	74.22%	64.29%	59.83%	50.00%	50.00%
^¹ UTK	87.60%	85.65%	84.65%	64.99%	76.43%	51.95%	45.41%	62.87%	56.33%	59.25%	54.53%	51.69%	50.00%	50.00%
Z C10	91.83%	87.76%	91.34%	87.35%	81.52%	30.87%	14.62%	62.29%	64.03%	62.44%	58.63%	55.20%	50.00%	50.00%
C100 اي	72.78%	63.68%	72.19%	68.82%	66.06%	9.78%	10.93%	81.22%	78.63%	81.34%	71.25%	50.10%	50.00%	50.00%
ତ୍ର S10	89.58%	89.17%	89.33%	84.33%	89.46%	32.92%	18.97%	66.08%	68.20%	66.20%	66.97%	58.22%	50.00%	50.00%
\ge UTK	89.46%	87.60%	89.60%	90.28%	87.30%	48.37%	45.46%	58.73%	52.79%	58.48%	58.93%	51.34%	50.00%	50.00%
Average	4.26×	3.92×	4.03×	3.91×	3.76×	$1.23 \times$	1.00×	1.39×	$1.28 \times$	1.34×	$1.25 \times$	1.16×	$1.00 \times$	$1.00 \times$

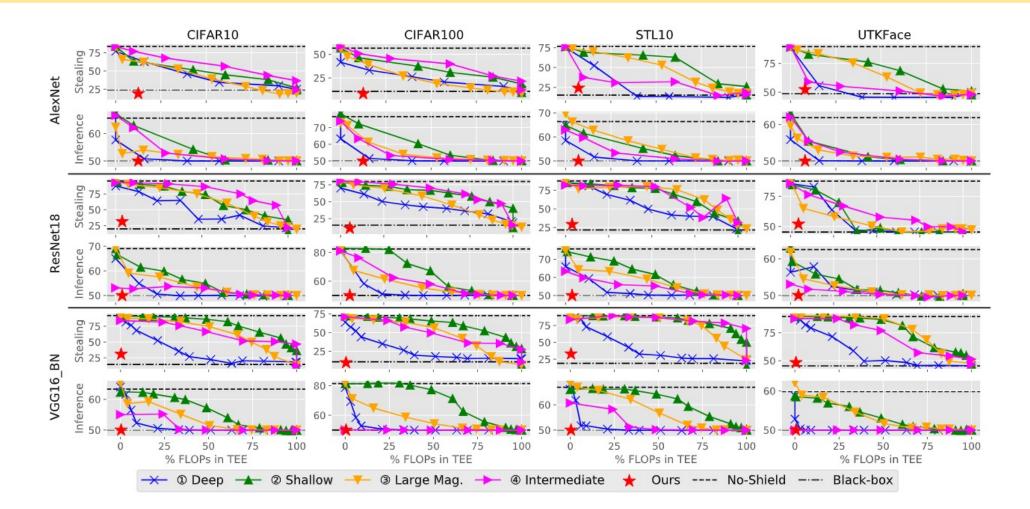
Research Question 2

RQ2: Can we improve TSDP security by changing the deployment configurations, e.g. shielding more weights?



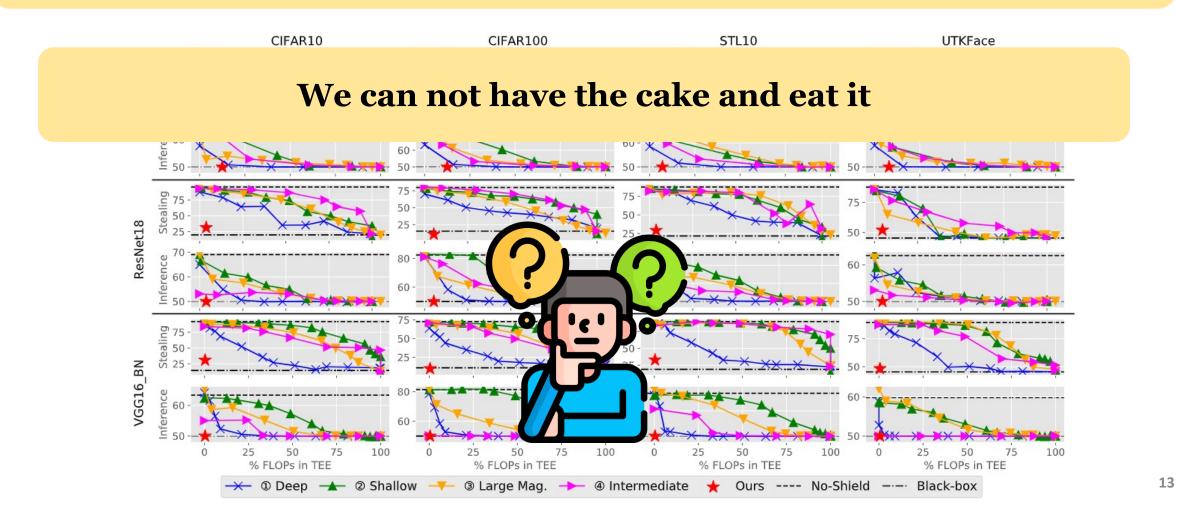
Conclusion for RQ2

The security-utility trade-off exists in all settings. The optimal configurations for different settings are different.



Conclusion for RQ2

The security-utility trade-off exists in all settings. The optimal configurations for different settings are different.



Solve TSDP Security Issue with Model Slice

• Existing solution

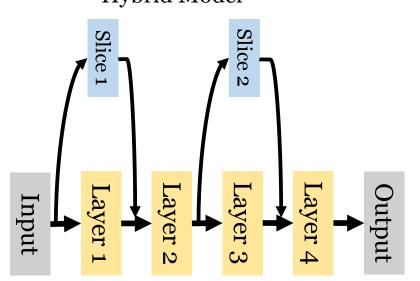
Training-Before-Partition

- All the weights contain private information

Partition-Before-Training

•Our insight

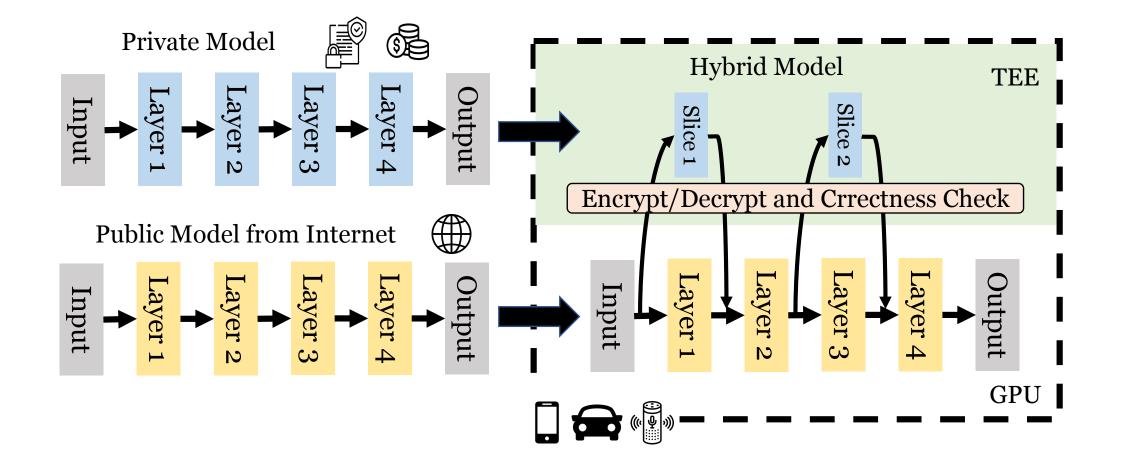
- Isolate private information into light-weight slices
- Other model parts are never updated by private training data



Hybrid Model

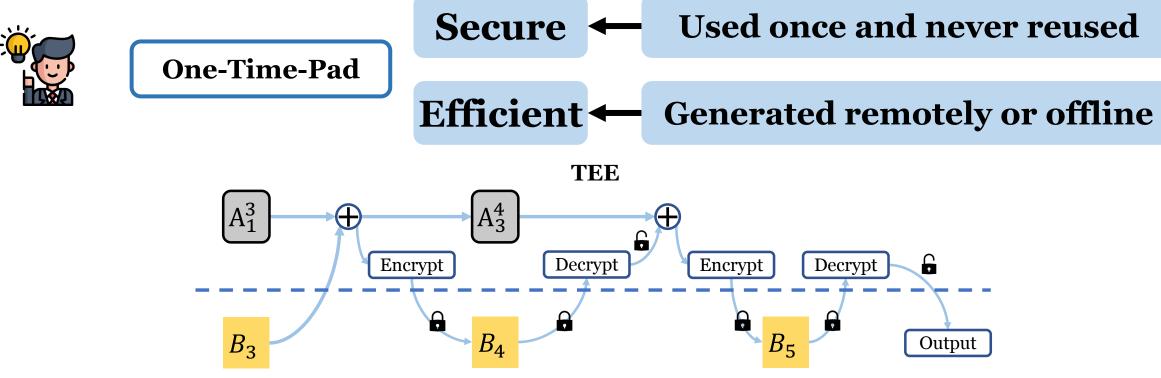
Privacy-Related Mode Slices

Compress the functionality of a private model into private slices



Communication Security at Deployment

Internal features may leak weight information in the TEE



Untrusted AI Accelerator

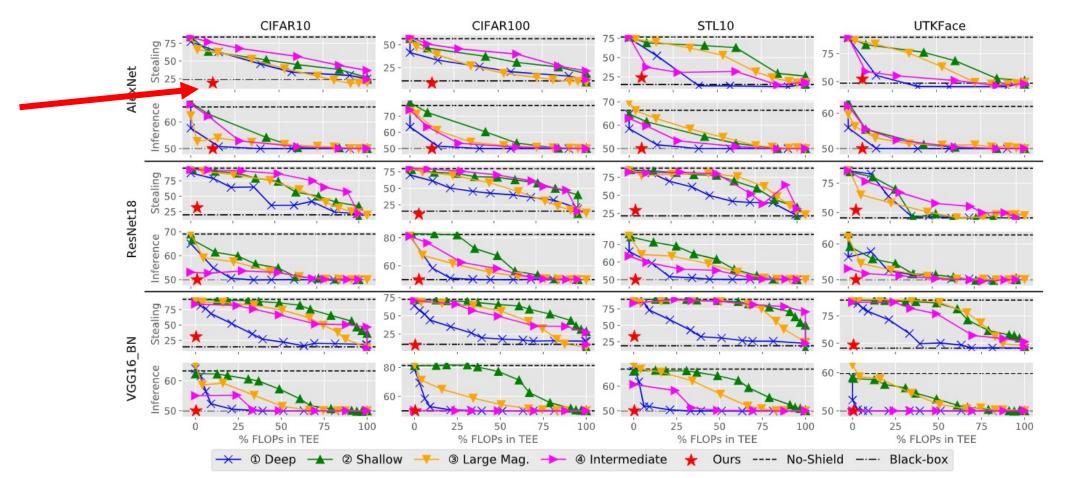
Tramer, Florian, and Dan Boneh. "Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware." ICLR'18

Experimental Evaluation

Provide black-box level protection with low utility cost

Better Security v.s. Utility Trade-off

Reduce Computation Cost by About 10X



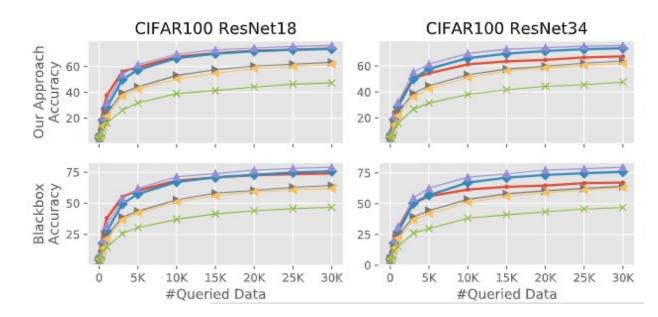
Experimental Evaluation

Note: Does TEESlice lead to performance loss in other aspects?

Table 5: The accuracy comparison between the victim model and the hybrid model trained by TEESLICE in the form of $M_{\rm vic}/M_{\rm hyb}$. Except for AlexNet where TEESLICE has a higher accuracy due to a larger model capacity, by average, TEESLICE's relative accuracy loss (the ratio between the accuracy of $M_{\rm hyb}$ and the accuracy of $M_{\rm vic}$) is 0.34%.

	CIFAR10	CIFAR100	STL10	UTKFace
AlexNet	83.71%/86.37%	56.46%/61.96%	76.54%/80.17%	89.42%/88.92%
ResNet18	95.47%/93.65%	79.94%/76.79%	87.51%/86.22%	86.97%/88.24%
ResNet34	91.11%/91.75%	81.00%/76.53%	88.22%/86.15%	87.69%/89.55%
VGG16_BN	91.62%/93.06%	73.03%/73.11%	89.67%/89.42%	89.19%/89.46%
VGG19_BN	92.48%/92.70%	71.38%/73.15%	89.62%/90.70%	89.96%/89.46%

Accuracy only drops by 0.34%



Exposed backbone model does not increase attack performance

Evaluation on Real Devices

TABLE VI: The throughput comparison between shieldingwhole-model, no-shield, and TEESLICE on a real desktop with SGX and GPU. We switch SGX to hardware mode to enable all protection. In parentheses we present the speedup w.r.t. the shielding-whole-model baseline.

	AlexNet	ResNet18	VGG16 BN
Black-box	6.56	7.67	1.55
No-Shield	495.27 (75.53×)	288.56 (36.56×)	103.10 (66.42×)
CIFAR10	44.67 (6.78×)	63.81 (8.32×)	72.80 (46.90×)
CIFAR100	47.36 (7.22×)	46.63 (6.08×)	58.69 (37.81×)
STL10	85.79 (13.08×)	65.24 (8.50×)	71.35 (45.97×)
UTKFaceRace	41.29 (6.30×)	58.03 (6.26×)	42.34 (27.28×)

Improve up to **10X** compared black-box

TABLE VII: TEESLICE inference time breakdown.

Data Transfer	Slice in TEE	Backbone on GPU	Non-Linear in TEE
35.61%	40.49%	2.84%	20.96%

Inference time break down

OryTorch

TAOISM: A <u>TEE-based</u> C<u>o</u>nfident<u>i</u>al Heterogeneou<u>s</u> Fra<u>m</u>ework for DNN Models

Conclusion

Existing TSDP solutions are not suitable in the era of LLM because offloaded model parts expose a large amount of privacy

The reason of vulnerability is the training-before-partition pipeline

TEESlice uses partition-before-training paradigm to isolate privacy and accelerate model inference

Thanks

2024-05