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Abstract
Utilizing Trusted Execution Environments (TEEs) to pro-
tect Large Language Models (LLMs) on users’ devices is a
practical solution for model owners. To alleviate the com-
putation burden on TEEs, researchers have proposed TEE-
Shielded LLM Partition (TSLP) to offload heavy computation
layers to co-operating untrusted GPUs, while lightweight lay-
ers are shielded in TEE. TSLP utilizes various lightweight
obfuscation schemes to protect offloaded weights from var-
ious attacks meanwhile not introducing large computation
overhead. However, existing lightweight obfuscation algo-
rithms have one vital vulnerability in common: the direction
similarity of obfuscated vectors. In this paper, we propose
a novel attack, ARROWMATCH, that utilizes direction simi-
larity to recover obfuscated private weights. To achieve this,
ARROWMATCH compares direction distances between obfus-
cated model weights and public pre-trained model weights.
To mitigate this vulnerability, we propose a novel obfuscation
scheme, ARROWCLOAK, which leverages lightweight matrix-
vector multiplication to protect vector directions and private
weights. We evaluate ARROWMATCH and ARROWCLOAK
on four representative LLMs, using seven datasets, along with
five obfuscation schemes. The results show that ARROW-
MATCH can break the protection of all existing lightweight
obfuscation schemes with high accuracy (similar to no pro-
tection) and effectively recover the private weights (with over
98% accuracy). In addition, ARROWCLOAK can effectively
defend against ARROWMATCH (6.5× better than state of
the art) and protect direction information by increasing the
direction distance over 900×. We also evaluate the perfor-
mance of ARROWCLOAK on a real-world Intel SGX device
and show that ARROWCLOAK can reduce total overhead by
2.83× compared to shield-the-whole baseline.

1 Introduction

On-Device LLM Security. Large Language Models (LLMs)
have become important intellectual properties for AI compa-

nies [18, 19]. To provide efficient inference services, tech gi-
ants choose to deploy LLMs on users’ devices [33]. However,
this approach exposes the model to potential attackers who
could steal the weights of the deployed models using hard-
ware [46, 85] or software [38] techniques. The on-device de-
ployment method introduces a new attack surface that would
allow adversaries to access white-box model information com-
pared to cloud-based deployment, where adversaries are sup-
posed to have only black-box access [57, 58, 83].
TEE-Shielded LLM Partition (TSLP). Trusted Execution
Environments (TEEs) can be utilized to protect the model
weights in on-device deployment settings. The goal of TEE-
based defense is to downgrade leakage vulnerabilities from a
white-box model to a black-box model [57, 58,83]. However,
existing commercial TEE products suffer from limited com-
putational capabilities and capacities. To resolve this prob-
lem, researchers have proposed TEE-Shielded LLM partition
(TSLP) solutions. TSLP offloads computation-intensive lay-
ers to untrusted GPUs (in the host OS) and deploys other
layers inside TEE [31, 58, 62]. This strategy, which can avoid
performing complex operations in TEEs, helps to reduce the
total overhead of LLM inference.
Weight Obfuscation in TSLP. TSLP protects the offloaded
weights by adding obfuscations before sending them to unpro-
tected GPUs. Such obfuscation techniques play a critical role
in preventing attackers from recovering model weights meant
to be private. The design of obfuscation algorithms aims to
find a balance between security (for the obfuscated weights)
and efficiency (for output reconstruction in the TEE). We did
a comprehensive summary of nine obfuscation algorithms
for TSLP and have found that existing works mainly use per-
vector 1 operations, namely vector permutation [31, 76] and
vector scaling [52], which are applied in TEE to obfuscate
the weight matrix. The only exception (GroupCover [82])
uses matrix multiplication to linearly combine weight vec-
tors, which introduces heavier computation overhead than
other lightweight schemes according complexity analysis.

1A vector means a column in the weight matrix.



Per-vector operations prioritize efficiency and apply the same
operation evenly to all values in each vector. However, the
limitation of per-vector operations is that they can not protect
the vector directions. Vector permutations would only change
the position of each vector in the weight matrix, while vec-
tor scaling only changes the vector length. These operations
have no impact on directions, leading to the fact that the di-
rections of vectors can be recovered by attackers even after
obfuscation, which indicates potential vulnerability.
Insight: Direction Similarity. We find that adversaries can
utilize the direction similarity between an obfuscated model
(Mobf) and a public pre-trained model (Mpre) to break the
lightweight obfuscation algorithms. This similarity can be
used to find the vector matches (correct pairs) between Mobf’s
weight vectors and Mpre’s weight vectors. The direction dis-
tances of correct matches are significantly lower than those
of incorrect weight matches. Thus, by comparing the direc-
tion distances of different weight vector pairs, we can recover
the correct matches and further recover the private weights.
Our insight is based on two observations: low direction dis-
crepancy during victim model training (Obs1) and direction
invariance of obfuscation algorithms (Obs2). Obs1 is be-
cause private models need to reuse foundation models’ gen-
eral knowledge to achieve high performance [16] and retain
the vector directions [3,24]. Obs2 is because existing obfusca-
tion algorithms are per-vector based and do not change vector
directions due to efficiency considerations.
Attack: ARROWMATCH. Based on our insight, we propose
a novel attack called ARROWMATCH. The goal of ARROW-
MATCH is to construct a surrogate model (Msur) which has
similar functionalities as the victim model (Mvic). ARROW-
MATCH consists of two stages: distance-based direction re-
covery (S1) and learning-based vector length adjustment (S2).
In S1, we recover the vector permutation by selecting the vec-
tor with the smallest direction distance to the public weight
vectors. In S2, we adjust the vector length to match the public
weights and train the surrogate model with a small amount of
data to achieve similar functionality as Mvic.
Defense: ARROWCLOAK. To mitigate the attack, we propose
a novel lightweight obfuscation algorithm, ARROWCLOAK,
which aims to protect vector directions of private weights. The
insight of ARROWCLOAK is to use matrix-vector multiplica-
tion in the TEE to obfuscate the weight matrix. Matrix-vector
multiplication is as lightweight as per-vector operations, the
computation complexity of which is over two magnitudes
lower than matrix-matrix multiplication. This operation can
effectively randomize vector directions. ARROWCLOAK con-
sists of two stages. The first stage obfuscates the weight matrix
by multiplying the matrix with a random vector in the TEE.
The second stage uses the obfuscated weights to infer each
LLM layer in a heterogeneous manner. We also demonstrate
that our ARROWCLOAK can be reduced to the LWE prob-
lem [48], a well-known hard problem in cryptography. We
analyze the numerical value distribution of ’security param-

eters’ to demonstrate that it satisfies the requirement of the
LWE problem.
Evaluation We evaluate ARROWMATCH and ARROWCLOAK
on four representative LLM models using seven datasets. The
models include BERT, GPT-2, and ViT. These datasets come
from both computer vision and text tasks. We follow prior
work and implement five state-of-the-art obfuscation algo-
rithms. Evaluation results show that ARROWMATCH breaks
the defense effect of all prior lightweight obfuscation algo-
rithms and recovers the model weights with high accuracy.
The performance of ARROWMATCH is 1.67× better than the
black-box attack, which is quite close to that of a no-shield
white-box attack (1.70×). The accuracy of S1 and S2 are
above 98%. We also demonstrate the effectiveness of AR-
ROWCLOAK. Under ARROWCLOAK setting, the performance
of ARROWMATCH is a close match to Shield-Whole (only
10% higher privacy leakage) setting and is 6.5× lower than
the best performance of other obfuscation algorithms. AR-
ROWCLOAK can also protect the direction of private weight
vectors effectively. The direction distance between the vec-
tors before and after obfuscation is 961.94× higher than prior
work. We also evaluate utility experiments on a real-world
machine with Intel SGX, which is one of the most widely
used TEEs. We implement ARROWCLOAK on a public frame-
work and evaluate the inference latency. The results show that
ARROWCLOAK can reduce the inference latency by 2.83×
compared to Shield-Whole. The obfuscation overhead of AR-
ROWCLOAK is only 0.46× compared to a non-obfuscated
TSLP solution, which demonstrates the efficiency of our solu-
tion.

We summarize the contributions as follows :

• We propose a novel attack, ARROWMATCH, which uti-
lizes direction similarity to break the defense of existing
lightweight obfuscation algorithms.

• We propose a novel obfuscation algorithm, ARROWCLOAK,
to protect vector directions in the private weight matrix.

• We evaluate ARROWMATCH and ARROWCLOAK on four
representative LLMs, seven datasets, with five obfuscation
schemes. The results show that ARROWMATCH can break
the defense of all prior lightweight obfuscation algorithms
and ARROWCLOAK can effectively prevent the attack.

2 Background

In this section, we will introduce the background of this paper,
including Large Language Model (LLM; Sec. 2.1), Model
Stealing (MS; Sec. 2.2), TEE-Shielded LLM Partition (TSLP;
Sec. 2.3) and weight obfuscation for TSLP(Sec. 2.4)



2.1 Large Language Model (LLM)
Transformer. The most important LLM architecture is the
transformer architecture [63]. Each LLM is constructed by
stacking several transformer blocks. Each block consists of
two modules: an attention module and a feed-forward (FF)
module.
Operation Analysis. We extend prior work [58, 62, 83] to
categorize the operations into three operation types based
on the complexity w.r.t the input vector. The categories are
linear operations (Oplinear), quadratic operations (Opquadra),
and non-polynomial operations (Opnon-poly). Oplinear refers
to the matrix multiplication between model weights and input
matrix. Opquadra refers to the matrix multiplication between
attention matrices. Opnon-poly includes other operations, such
as the activation function. We use n to represent the dimen-
sion of the internal feature and l to represent the sequence
length. The input and output are X ,Y ∈Rn×l . The weight ma-
trix for Oplinear is W ∈ Rn×n. The computation complexity
of Oplinear is O(n2l). Opnon-poly only takes marginal compu-
tation (less than 8%). Oplinear and Opquadra takes about 66%
and 25% computation operations, respectively [60, 62].

2.2 Model Stealing
Model Stealing (MS) attack is a real-world threat to the on-
device LLM models. For a victim private model Mvic, the goal
of MS is to construct a surrogate model Msur that has a similar
functionality as Mvic. MS attacks can be categorized into
two types: white-box attacks and black-box attacks. Black-
box attacks collect a large amount of training data from the
Mvic and directly train Msur [41]. White-box attacks utilize
system or hardware access to directly steal Mvic’s weights
and construct Msur [58, 83]. Some white-box attack surfaces
include memory [26, 46] and PCIe bus [85]. The attacker
first steals partial Mvic weights and constructs Minit. Then the
attacker collects a small amount of labeled data from Mvic and
trains Minit to get Msur. White-box attacks are cheaper, more
effective, and more efficient than black-box attacks because
the adversary can directly steal Mvic’s weights [83].

2.3 TEE-Shielded LLM Partition (TSLP)
TEE-based Model Protection. We follow prior work to re-
gard TEE as a secure and computation-limited area (with-
out GPU) on a malicious adversary host machine [23, 36,
53, 58, 82, 83]. Although there are some prototypes of GPU
TEE in both academic community [55, 68] and industrial
products (e.g. Nvidia’s Hopper [40]), they are not widely
commercially available [71]. This paper focuses on existing
commercial TEEs without GPU because we want to provide
a practical solution for real-world deployment. TEE can be
utilized to protect LLM models on users’ devices [58,83]. By
shielding the model inside TEE, the host machine can not see
the plaintext of the model weights. The goal of TEE-based

Model Owner User’s Device

𝑀obf: Obfuscated Oplinear and Opquadra

𝑀shield: Opnon−poly

𝑀vic

Figure 1: An illustration of TSLP.

protection is to downgrade the efficient and cheap white-
box attacks against slower and more expensive black-box
attacks [23,36,52,58,82,83]. This way, the data owner can re-
duce the additional attack surface (white-box access) exposed
to the host machine.
TSLP. TSLP aims to mitigate the computation limitation
of TEE [23, 36, 53, 58, 82, 83]. Because directly shielding
LLM will introduce non-trivial overhead (sometimes up to
50× [62]), TSLP utilizes the co-located untrusted GPU to
offload part of the LLM computation. TSLP partitions the
model into two parts. One is a computation-light part and
is shielded by TEE to provide security protection (Mshield).
The other is an obfuscated computation-intensive part and
offloaded to the untrusted GPU for fast computation (Mobf).
Typically, TSLP solutions select Opnon-poly as the Mshield and
leave Oplinear and Opquadra in Mobf. Fig. 1 illustrates the
TSLP design and the partition process.
Integrity Check and Intermediate Result Protection. Prior
work has proposed solutions to check the integrity of untrusted
GPU’s computation on Mobf and protect the input/output sent
outside of TEE [58, 62, 83]. In this paper, we focus on the
weight obfuscation problem and reuse the integrity check and
intermediate result protection from prior work. We leave a
more detailed introduction of these solutions in Appx. A.

2.4 Weight Obfuscation for TSLP
TSLP solutions use various weight obfuscation techniques
to protect the weight values of Mobf [52, 57, 58]. We first
formulate the weight obfuscation algorithms and summarize
existing literature.
Formulation. We focus on Oplinear because only Oplinear
directly relates to model weights. For each weight matrix W ,
we take a column view and split W into multiple columns.
We regard each column as a vector: W = [w1,w2, · · · ,wn],
abbreviated as W = [wi] (n is the matrix dimension). Let
Yvic = f (X ;Wvic) = X ·Wvic represent Oplinear, where Wvic ∈
Rn×n is the private model weights. The defender uses an
obfuscation function g(·) : Rn×n ⇒ Rn×n to compute an ob-
fuscated weight matrix Wobf = g(Wvic). TEE sends Wobf and
X2 to untrusted GPU. GPU computes the results over Wobf

2As illustrated in Sec. 2.3, X is protected before sent outside of TEE. For



Table 1: We compare existing weight obfuscation schemes in TSLP. We analyze the obfuscation and de-obfuscation functions, the
annotation of the obfuscation keys, the complexity of de-obfuscation, and the TEE workload. The capability of vector direction
protection is analyzed in Sec. 4.1. ARROWCLOAK is our proposed defense in Sec. 6.

Paper Venue Obfuscation and De-obfuscation Function Annotation
Obfuscation

Keys
Deobfuscation

Complexity
Small TEE
Workload

Protect Vector
Direction

SOTER [52] ATC’22 g(Wvic) = µ ·Wvic, g−1(Yobf) = Yobf/µ µ is a periodically updated scalar µ O(nl) ✓ ✗

ShadowNet [58] S&P’23
g(Wvic) = Λ ·Wvic +F ,

g−1(Yobf) = Λ−1 · (Yobf − xF)

Λ = D ·Π, D is a diagonal matrix, Π is a
permutation matrix, x ·F is computed in f (x;Wobf)

D,Π,F O(nl) ✓ ✗

GroupCover [82] ICML’24
g(Wvic) = [A1W (1), · · · ,AkW (k)] ·Π,

g−1(Yobf) = ([A−1
1 Y (1)

obf , · · · ,A
−1
k Y (k)

obf ]) ·Π−1

Ai ∈ R
n
k ×n, k is the number of groups,

W (i) represents n/k vectors by clustering Wvic
Ai,Π O(n2l/k) ✗ ✓

TransLinkGuard [31] MM’24 g(Wvic) =Wvic ·Π, g−1(Yobf) = Yobf ·Π−1 π is specific for each layer Π O(nl) ✓ ✗

Tempo [76] IJCNN’24 g(Wvic) = c⃗ ·Wvic ·Π c⃗ ∈ Rn, π is a permutation matrix c⃗,Π O(nl) ✓ ✗

KV-Shield [78] MobiArch’24 g(Wvic) =Wvic ·Π, g−1(Yobf) = Yobf ·Π−1 Π is a permutation matrix Π O(nl) ✓ ✗

TSQP [57] S&P’25 g(Wvic) =Wdissim/s, g−1(Yobf) = s ·Yobf,
Wdissim is a learned weight to optimize
dissimilarity, s is quantization scalar

s,
Wvic −Wdissim

O(nl) ✓ ✗

CoreGuard [32] Arxiv’24 g(Wvic) =Wvic ·Π, g−1(Yobf) = Yobf ·Π−1 Π is shared by all layers Π O(nl) ✓ ✗

ARROWCLOAK -
g(Wvic) = (Wvic ·D1 +v ·1n ·D2) ·Π

g−1(Yobf) = Yobf ·Π−1 ·D−1
1 −X ·v ·1n ·D2 ·D−1

1 .

D1 and D2 are diagonal matrices,
v⃗ = ∑k j · w⃗ j, Π is a permutation matrix

D1,D2, v⃗,Π O(nl) ✓ ✓

by performing Yobf = f (X ;Wobf) and send Yobf to TEE. TEE
uses a deobfuscation function g−1(·) to recover the results
Yvic = g−1(Yobf).

g(·) should be designed to have low computation com-
plexity and low TEE workload: O(g(Wvic)+ g−1(Yobf)) ≪
O( f (X ;Wvic)). This is because TSLP aims to avoid heavy ma-
trix multiplication inside TEE. The computation complexity
of f (X ;Wvic) is O(n2l), thus the complexity of the obfusca-
tion algorithm should be much lower than O(n2l). Otherwise,
if O(g(Wvic)+g−1(Yobf)) = O( f (X ;Wvic)), the defender can
directly perform f (X ;Wvic) in the TEE and does not need to
offload.
Literature Summary. We summarize the weight obfusca-
tion literature and algorithms in Tab. 1. Tab. 1 displays the
obfuscation function g(·) and de-obfuscation function g−1(·),
and the workload for each algorithm. We can observe that,
except for GroupCover, all the other algorithms have a low
computation complexity (O(nl)) and low TEE workload. We
call the algorithms with low computation complexity (O(nl))
lightweight obfuscation algorithms. Because LLMs usually
have a large n (e.g., 768 or 1024 [13]), the complexity of
O(nl) is at least two magnitudes lower than O(n2l). Group-
Cover has a high complexity of O(n2l/k), where k is a small
constant. Thus GroupCover has a high TEE workload.
Common Characteristics. The common motivation of these
lightweight algorithms is that they use per-vector operations
and avoid matrix multiplication to achieve O(nl) complexity.
From Tab. 1, we can observe that lightweight obfuscation
algorithms mainly rely on two types of matrices: the permuta-
tion matrix Π and diagonal matrix D. Permutation matrix Π

changes the relative vector positions in Wvic. Let π(·) repre-
sent the permutation function for Π and maps i-th vector to
π(i). For each wi

vic ∈Wvic, Π works as Wvic ·Π = [wi
vic] ·Π =

simplicity, we do not explicitly mention this protection in the main paper.

[wπ(i)
vic ]. The diagonal matrix D scales all vectors in Wvic with

different scalars. Other scaling techniques scaling (used by
SOTER [52] and Tempo [76]) can be generalized to D. Al-
though some algorithms use different operations, they can be
easily removed or converted into similar operations mentioned
before.

3 Threat Model

In this section, we will introduce the threat model of this paper.
The threat model follows previous TSLP work that uses TEE
to protect model security on users’ devices [58, 82, 83].
Scenario. We study a two-party LLM inference scenario. One
is the model owner (AI service providers), and the other is the
model user (e.g. financial institutions). The model provider
deploys the model to users’ devices. Some examples include
smartphone applications [33] and autonomous driving sys-
tems [85]. We assume the users are honest-but-curious adver-
saries who are willing to follow the deployment protocol but
want to steal the deployed model [57, 58]. The model owner
is the defender to protect model security on users’ devices.
Following [29, 57, 82, 83], we assume victim models are fine-
tuned from public LLMs due to prohibitive scratch training
costs and the imperative need for task-specific customization
(e.g., alignment [22])
Adversary’s Goal. As discussed in Sec. 2.2, the adversary’s
goal is to steal the functionality of the deployed model. After
stealing the model functionality, the adversary can directly use
it without paying fees or selling the model to others. Specifi-
cally, the adversary aims to construct a surrogate model Msur
that has the same functionality as the victim model Mvic [58].
Adversary’s Capability. We assume the adversary can con-
trol the user device and access all model data outside of TEE.
Some access methods include memory scanning [46], installa-
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Figure 2: The adversary uses direction similarity between
Mpre and Mobf to construct Msur, which can steal the function-
ality of Mvic.

tion package unpacking [59], and bus monitoring [85]. How-
ever, the adversary has no access to the code or data in the
TEE. We assume the adversary can use public pre-trained
models Mpre and data to help analyze the obfuscated model
weights. This is a common and practical assumption in model
stealing attacks [41,82]. The adversary can use existing finger-
print attacks to identify the pre-trained model and download
it from the Internet [11, 66]. We also assume the adversary
can query Mvic to collect a small amount of labeled data (less
than 1%) to train Msur [26, 46, 77].
Defender’s Goal and Capability. The defender aims to down-
grade the white-box attacks to black-box attacks. We consider
the black-box defense as the security upper-bound [82, 83].
TSLP solutions do not aim to completely defend against black-
box attacks because black-box attacks are still possible even
if the model is deployed to the owner’s server. TSLP aims to
eliminate additional security leakage during model deploy-
ment. The model owner can control the data and code in TEE
to protect the model’s security. The defender can design the
weight obfuscation algorithms to protect Mobf.

4 Direction Similarity

In this section, we introduce the central insight of this paper:
the adversary can utilize the direction similarity to break the
defense of weight obfuscation schemes. We first illustrate this
insight in Sec. 4.1. The insight is based on two observations.
In Sec. 4.2, we will illustrate the two observations.

4.1 Attack Insight
Insight. Our attack insight is that there exists direction simi-
larity between the weight vectors in the obfuscated weights
Wobf and the publicly available pre-trained weights Wpre. The
adversary can utilize the direction similarity to recover the
permutation and scale operations, and break the obfuscation
schemes. The adversary can recover weight information from
the obfuscated model and construct the surrogate model Msur.
The surrogate model has a similar functionality as the TEE-
shielded victim model Mvic, thus stealing the functionality of
Mvic. This insight is based on two observations. The first ob-
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Figure 3: The low direction discrepancy in Mvic training.

servation is the low direction discrepancy between the weight
vectors of Wvic and Wpre (Obs1). The second observation is
the direction invariance of the weight vectors in Wobf (Obs2).

Fig. 2 shows the insight of this paper. The model owner
first trains Mvic from Mpre. During this phase, the weights
of Mvic can not deviate too much from Mpre (Obs1) because
Mvic needs to reused the capability inside Mpre. After Mvic
is deployed in TEE, the model owner uses a weight obfusca-
tion algorithm to protect the model. We found that existing
lightweight obfuscation algorithms do not change the vector
direction in the weight matrix (Obs2). This is because these
algorithms need to guarantee high computation efficiency of
obfuscation and de-obfuscation in TEE. Changing the vector
direction requires performing complex matrix multiplication
and introducing non-trivial overhead. Thus, the weight vector
directions between Mpre and Mobf are similar. The adversary
can utilize this similarity to break the obfuscation scheme and
construct Msur.
Symbol Definition. We will use Wvic, Wobf, and Wpre to repre-
sent the weight matrix of the victim model Mvic, obfuscated
model Mobf, and pre-trained model Mpre, respectively. We use
wi

vic ∈Wvic, wi
obf ∈Wobf, and wi

pre ∈Wpre to represent the i-th
vector in Wvic, Wobf, and Wpre, respectively.

4.2 Two Observations

In this section, we illustrate why the two observations exist
and are not easy to eliminate.
Obs1: Low Direction Discrepancy. We illustrate the first
observation in Fig. 3. In the figure, we use three arrows to
represent the weight vectors of each model. The gray dashed
arrows represent Mpre, and the green solid arrows represent
Mvic. After Mvic training, the direction of Mvic’s arrows are
only slightly different from Mpre. For example, w3

vic and w3
pre

have similar directions. We call the vector pair (wpre,wvic)
where wvic is trained from wpre as the correct pair. Otherwise,
it is an incorrect pair. As shown in the figure, (w3

pre,w3
vic) is a

correct pair, and (w3
pre,w2

vic) is an incorrect pair. The direction
distance within a correct pair is smaller than that within an
incorrect pair.

This is because Mvic relies on Mpre’s general capability to
perform downstream tasks. Mvic can not deviate from Mpre
too much. Thus, the training process also needs to minimize



the change and maintain Wpre as much as possible [16]. Prior
work has demonstrated that the weight updates during LLM
training exhibit the “low intrinsic dimension” property and
can be projected to a smaller subspace [3]. The following
work further demonstrated that the weight updates can be
decomposed into low-rank spaces (the rank can be as low
as 0.5% of the original matrix) [24], which means that the
modification to the vector direction is limited. Some recent
work also uses theoretical analysis to demonstrate that the
weight difference before and after training is bounded by the
norm of decomposed matrics [16], which means the direction
change is also bounded.
Observation Validation. We conduct a preliminary exper-
iment to demonstrate Obs1. We use three LLMs and four
datasets (details in Sec. 7.1). We use the distance over unit
vectors to represent the direction distance. To guarantee the
generalization, we select three different distance functions:
cosine distance, L2 distance, and L∞ distance. For each wi

vic,
we measure the direction distance with three types of vec-
tors: Original, Second-Cloest, and Random. Original is
the original vector wi

pre. Second-Cloest is the Wpre’s vector
that has the second smallest distance to wi

vic (the vector with
the smallest distance should be wi

pre). Random is a randomly
selected vector (other than wi

pre) in Wpre. We sample a ran-
dom vector 100 times and compute the average distance. The
results are shown in Tab. 2. We can observe that the distance
of Original is much smaller than those of Second-Closest
and Random. For example, the cos of Original is 0.0006, but
the distances of Second-Closest and Random are larger than
0.79. L2 and L∞ also show the same trend. Averagely, the dis-
tance of Second-Closest is 77.82× larger than Original,
and the distance of Random is 92.54× larger.

Table 2: Validation for Obs1. We report results of three dis-
tance functions.

Distance cos L2 Linf Average

Original 0.0006 0.0238 0.0033 0.0093(1.00×)

Second-Closest 0.7999 1.2616 0.1095 0.7237(77.82×)

Random 0.9951 1.4093 0.1775 0.8606(92.54×)

[𝐰!"#$ ] =
[ , , ]

Permutation
Matrix

Π =
0 0 1
1 0 0
0 1 0

Diagonal
Matrix

𝐷 =
0.6 0 0
0 0.5 0
0 0 0.8[𝐰!"#$

!
] =

[ , , ]
[𝐰%&'

$! ] = [0.6 ⋅ ,
0.5 ⋅ , 0.8 ⋅ ]

Figure 4: Direction invariance of per-vector operations. Best
viewed in color. We use three arrows (blue, orange, and green)
to represent three weight vectors. For each vector, i is the
index in Wvic, and i′ is the index in Wobf. After applying Π

and D to Wvic, the vector direction remains the same.

Obs2: Direction Invariance. The limitation of lightweight
obfuscation algorithms is that they can not obfuscate the vec-
tor direction. Fig. 4 shows the effect of per-vector operations
on three vectors. Π changes the vector positions. For example,
w1

vic (the blue arrow) becomes the third vector (in the middle
figure). Thus its new index i′ is 3. w2

vic and w3
vic become the

first (i′ = 1) and second (i′ = 2) vectors, respectively. The
directions of all three vectors remain the same. D multiplies
one constant scalar s to each wi

vic and also does not modify the
vector direction. After applying D, all vectors in the left part
of Fig. 4 become shorter and the directions do not change.
Difficulty of Changing Direction. We demonstrate that only
using per-vector operation without matrix multiplication (as
lightweight obfuscation algorithms do), it is difficult to design
an algorithm that can change the direction. Our conclusion is
that, if the defender can obfuscate the directions, the defender
must perform a matrix multiplication to recover Yvic. The
only condition that TEE does not need to perform matrix
multiplication is that the directions of Wvic and Wobf are the
same.

5 ARROWMATCH

We introduce ARROWMATCH, a novel direction similarity
attack against weight obfuscation algorithms in TSLP. Fig. 5
shows the pipeline of ARROWMATCH. ARROWMATCH takes
Mobf and Mpre as inputs and outputs the surrogate model Msur
which has a similar functionality as Mvic. The attack process
consists of two steps: distance-based direction recovery (S1)
and learning-based length adjustment (S2).

The goal of S1 is to use direction similarity to inverse the
permutation operation. Based on the attack insight, S1 iterates
all vector pairs between Wpre and Wobf, computing the direc-
tion distance within each pair, and select the pair with the
smallest distance. S1 aims to identify an index mapping σ(·),
which is the reverse function of π(·) and satisfies π(σ(i)) = i.
σ(·) maps the vector wi

obf to the original position wσ(i)
vic . We

use cosine distance (cos(·, ·)) to measure the direction simi-
larity. The attacker iterates each wi

obf ∈Wobf and selects the
j-th vector with the lowest distance for the element vectors:

σ(i) = argmin
j

cos(wi
obf,w

j
pre). (1)

For example, in Fig. 5, during the obfuscation phase, w1
vic

is mapped to the fourth position in Wobf, thus π(1) = 4. The
attacker identifies the reverse mapping σ(4) = 1 and recovers
the vector index.

The goal of S2 is to recover the obfuscation scalar that is
multiplied to wi

vic. We first compare the length between wi
obf

and wσ(i)
pre to recover an approximation of si, denoted as ŝi. Let

l(·) be a length function for a vector. The approximation of si

is computed as ŝi = l(wσ(i)
pre )/l(wi

obf). We then use ŝi to initial-
ize the approximate vector wσ(i)

init = ŝi ·wi
obf and construct the
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Figure 5: The attack pipeline of ARROWMATCH. The attacker uses Mvic and Mpre to perform the attack. The attack consists of
two steps: distance-based direction recovery (S1) and learning-based length adjustment (S2).

initialization weight matrix as Winit = [wσ(1)
init ,w

σ(2)
init , . . . ,w

σ(n)
init ].

We construct Winit for each layer to get the initialized model
Minit. We then train Minit with little budget (training data and
iterations) to get Msur. As shown in Fig. 5, the attacker can
recover the vector length to a similar value as Wvic after S2.

6 ARROWCLOAK

In this section, we present ARROWCLOAK, a novel
lightweight obfuscation algorithm that introduces attacker-
invisible obfuscation vectors to safeguard the direction of
model vectors. We introduce the insight (Sec.6.1) and the
pipeline of ARROWCLOAK (Sec.6.2). Finally, we analyze the
security of ARROWCLOAK (Sec.6.3) by reducing the obfus-
cation algorithm to the LWE problem.

6.1 Defense Design

Fundamental Limitation. The fundamental limitation of ex-
isting lightweight obfuscation algorithms is that they only use
per-vector operations and fail to fully exploit the TEE’s O(nl)-
complexity operations to design obfuscation algorithms. Prior
work mainly focuses on per-vector obfuscation (e.g., scaling,
shuffling, and addition) because such operations are straight-
forward to consider low-complexity operations. However,
these operations are insufficient to protect the direction of
the private vectors in front of ARROWMATCH. According to
our analysis in Obs2, per-vector operations can not modify
the direction of the private vectors. This allows attackers to
recover the direction of private vectors from the obfuscated
weights, serving as a starting point for efficient MS attacks.
Our Insight: Matrix-Vector Multiplication. To address this
limitation, our insight is to introduce a new low-complexity
operation, matrix-vector multiplication, to design the obfusca-
tion algorithm. Prior work regards matrix-vector multiplica-
tion as one type of matrix multiplication and does not consider
it executable in TEEs. However, we find that matrix-vector
multiplication can be executed in TEEs with O(nl) complex-
ity. For matrix X ∈ Rl×n and vector v ∈ Rn, the vector multi-
plication operation X · v has a nl complexity and is affordable
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Figure 6: The difference between the existing obfuscation
algorithms and ARROWCLOAK. We highlight the difference
of ARROWCLOAK in blue squares and lines. ARROWCLOAK
uses a new O(nl)-complexity operation, matrix-vector multi-
plication, in TEE to obfuscate the vector direction of Wvic.

in TEEs. With this operation, we can introduce a new obfus-
cation vector v to protect the direction of the private weight
vectors. Figure 6 illustrates the comparison between prior
obfuscation algorithms and ARROWCLOAK. The difference
of ARROWCLOAK is highlighted in blue squares and lines.
As we can see, prior work mainly uses Π and D to obfuscate
Wvic. In contrast, ARROWCLOAK performs a matrix-vector
multiplication (v′ = X ·v) to obfuscate Wvic and recover Yvic
in TEE.
ARROWCLOAK Design We construct v as the linear combi-
nation of the column vectors of Wvic, i.e., v = ∑ki ·wi

vic. We
then obfuscate Wvic by scaling and adding v to each column
vector wi

obf = pi ·wi
vic+qi ·v. Note that ki, pi, and qi are drawn

from Zu, where u is a large prime number. Finally, we shuf-
fle the column vectors as prior work does. The obfuscation
process of ARROWCLOAK can be formulated as:

Wobf = [pi ·wi +qi ·v] ·Π = (Wvic ·D1 +v ·1n ·D2) ·Π. (2)

where v ∈Rn×1 ,1n is a vector of ones and v ·1n is a matrix
with v as each column. Note that v ·1n is a O(nl) complexity
operation because it can be implemented by copying v for n
times. D1 and D2 are diagonal matrices as follows:

D1 = diag(p1, · · · , pn), D2 = diag(q1, · · · ,qn). (3)



The offloaded computation can be expressed as:

Yobf = X ·Wobf = X · (Wvic ·D1 +v ·1n ·D2) ·Π. (4)

Thus we have:

Yobf −X ·v ·1n ·D2 ·Π = X ·Wvic ·D1 ·Π. (5)

The recovery process in TEE can be formulated as:

Yvic = X ·Wvic = X ·Wvic ·D1 ·Π ·Π−1 ·D−1
1 (6)

= (Yobf −X ·v ·1n ·D2 ·Π) ·Π−1 ·D−1
1 (7)

= Yobf ·Π−1 ·D−1
1 −X ·v

O(nl)
·1n ·D2 ·D−1

1 . (8)

Computation Complexity Analysis. The matrix-vector mul-
tiplication X · v has a O(nl) complexity, and multiplying it
by 1n is O(nl) as well. The permutation operation (Π−1) and
scaling operations (D−1

1 and D2 ·D−1
1 ) are O(nl) complexity.

Thus, the recovery process has a O(nl) complexity, which
is efficient for TEEs. Note that ARROWCLOAK relies on
three encryption keys to protect Wvic: the linear combination
coefficients ki, the scaling coefficients pi and qi, and the per-
mutation matrix Π. Similar to prior work [52, 58, 82], these
keys are stored in TEEs and can be periodically updated to
enhance security.
Protecting Opquadra. ARROWCLOAK can also protect
Opquadra with the matrix-vector multiplication. This way, the
adversary can not utilize the internal features in Opquadra to
steal the model’s privacy. We leave the detail of applying
ARROWCLOAK to Opquadra in Appx. B.

6.2 ARROWCLOAK Pipeline
ARROWCLOAK consists of two phases: an offline model ob-
fuscation phase and an online heterogeneous inference phase.
The first stage is to obfuscate the model weights and generate
Wobf, so that Wvic can be safely deployed to the untrusted edge
devices. The second stage uses Wobf to perform inference in
the edge devices and recover the true output in the TEE. The
inference process is iteratively conducted from the first layer
to the last layer.
Offline Model Obfuscation. This phase obfuscates model
weights in TEE or the model owner’s server. The obfuscation
process is conducted as introduced in Sec. 6.1 in a layer-wise
manner. The obfuscated weights Wobf are generated and stored
in the TEE. The obfuscation keys (ki, pi, qi, and Π) are also
stored in the TEE. After a fixed time period, the model owner
updates the obfuscation keys to enhance security.
Online Heterogeneous Inference. This phase is conducted
for each input sample and iteratively computed for each layer.
For the non-polynomial layers (Opnon-poly; e.g., LayerNorm),
the TEE directly computes the results. For the linear layers
(Oplinear), ARROWCLOAK offloads the computation to un-
trusted GPUs with the obfuscated weights Wobf. For each

Oplinear, the offload computation consists of three steps: TEE
preparation, GPU computation, and TEE recovery. The first
step sends X and Wobf to the GPU. The second step computes
the obfuscated results Yobf in the GPU. This step is the same
as normal GPU computation. The third step follows Eq. 8
to recover the true output Yvic in the TEE. For the integrity
check and protection of X and Yobf, we follow prior work
to use Freivalds’ algorithm [17] and One-Time-Pad [1] as
introduced in Sec. 2.3.

6.3 Security Analysis
Learning with Error (LWE). Learning with Errors (LWE)
is a computational problem closely related to lattice-based
cryptography [48]. Its main claim to fame is that it is known
to share the same complexity of worst-case lattice problems,
which provide well-learned provable security [49]. The LWE
problem involves solving a noisy linear system where random
errors are intentionally added to the equations. Due to these
carefully chosen errors, it is difficult to recover the original
solution (secret) of perturbed equations. The LWE problem
has already found many applications in the crypto-world, in-
cluding homomorphic encryption [7], digital signatures [15],
and secure key exchange [5].
LWE Definition (in matrix representation). Let Zu be a
finite integer field where u is a big prime number. s ∈ Zn

u is
a n-dimension secret vector, and S = [si] is a secret matrix.
A,B ∈ Zm×n

u are two public matrices. E is a random error
matrix where e ∈ E is drawn from a gaussian distribution
N (µ,σ2). The standard deviation σ is larger than 2

√
n to

prevent attackers from recovering the secret matrix S. The
LWE problem can be formulated as:

B = A⊤ ·S+E mod q, A,B ∈ Zm×n
u , S,E ∈ Zn×n

u . (9)

Even if the attacker can learn A and B, it is hard to recover
the secret matrix S from the LWE problem.
Reducing to LWE. We present the formulation to reduce
the obfuscation algorithm to the LWE problem. According to
Eq. 2, wi

obf can be represented as:

wi
obf = pi ·wi +qi ·v = pi ·wi +qi ·

n

∑
j=0

(k j ·w j)

= (pi +qi · ki) ·wi +qi ·∑
j ̸=i

(k j ·w j) (10)

= [w1, . . . ,wn] · [q1 · k1, . . . , pi +qi · ki, . . . ,qn · kn]
⊤.

Wobf can be represented as a matrix multiplication form as:

Wobf =Wvic ·H ·Π, H =


p1 +q1 · k1 · · · qn · kn

...
. . .

...
q1 · kn · · · pn +qn · kn

 .

(11)



Figure 7: E’s distribution for three layers(layer1, layer6 and
layer12) of BERT-Base.

Let H̃ = H ·Π, we have Wvic =Wobf · H̃−1. By decomposing
Wpre into Wvic and a residual matrix, we have:

Wpre

B̂

=Wvic +(Wpre −Wvic) =Wobf
Â⊤

· H̃−1

Ŝ

+(Wpre −Wvic)

Ê

.

(12)
Here Â, B̂, Ŝ, and Ê are four matrices of real numbers. After
quantizing the real numbers to a finite field Zu (m is the
quantization factor) by

A = ⌊Â ·2m⌉, B = ⌊B̂ ·2m⌉, S = ⌊Ŝ ·2m⌉, E = ⌊Ê ·2m⌉, (13)

we can reduce Eq. 11 to the LWE problem Eq. 9.

Error Matrix Distribution. The distribution of error E is
crucial to the security of LWE based schema [48]. E should
be drawn from a discrete Gaussian distribution N (µ,σ2),
and its standard deviation σ should be larger than 2

√
n. We

validate these requirements in ARROWCLOAK through both
quantitative and qualitative experiments. We first plot the
distribution of Wpre −Wvic in each model. Fig. 7 shows that
the distribution of three randomly selected layers of BERT-
Based. From these figures, we can qualitatively observe that
Wpre −Wvic is close to a normal distribution. We then use
the Kolmogorov-Smirnov test to perform hypothesis tests to
validate the normality of Wpre −Wvic. The results show that
the p-values are larger than 0.05 in all methods, which means
that there is no significant evidence to reject the hypothesis
that Wpre −Wvic is normally distributed. Finally, we compute
σ of Wpre −Wvic. Note that for LLMs, n = 768, and the σ

threshold is 2
√

768 ≈ 55. For all models, the deviations are
larger than the threshold, which matches the requirement of
the LWE problem.

7 Evaluation

In this section, we evaluate the performance of ARROW-
MATCH and ARROWCLOAK. We first illustrate the evaluation
setup and answer the following research questions.

RQ1: How is the performance of ARROWMATCH?
RQ2: How is the attack performance in identifying vector
matches and lengths?
RQ3: How is ARROWCLOAK’s defense effectiveness
against ARROWMATCH?
RQ4: How much can ARROWCLOAK protect the vector
direction of model weights?
RQ5: What is the performance of ARROWCLOAK on real-
world TEE devices?
RQ6: Is ARROWMATCH scalable in different fine-tune
scenarios?

7.1 Evaluation Setup

Models. We evaluate four representative models: BERT-
Base [13], GPT2-Base [44], ViT-Base [14], and GPT2-
XL [44]. BERT-Base and GPT2-Base are selected from
the auto-encoding and auto-regressive architectures, respec-
tively. They are the default models in their respective pa-
pers [51]. GPT2-Base has a similar architecture to mod-
ern LLMs such as OpenAI’s ChatGPT, Meta’s LLaMA, and
Google’s PaLM [47]. ViT-Base is one of the default models in
the vision transformer architecture. We select GPT2-XL as a
larger model to demonstrate the versatility of ARROWMATCH.
GPT2-XL has 1.5B parameters, which is similar to modern
state-of-the-art edge models such as Phi [2].
Datasets. We select seven representative datasets for each
model following prior work. For ViT-Base, we select CI-
FAR10, CIFAR100 [28], and Food101 [6] following recent
TSLP work [31, 82, 83]. For BERT and GPT, we select
four datasets from the GLUE benchmark [65]: MNLI [74],
QQP [27], SST-2 [54], and QNLI [45]. We select the GLUE
benchmark because it is a default benchmark to evaluate the
model’s performance on text tasks [12, 13, 34]. We follow
recent work to select the four datasets [31] because they are
larger and more complex than other datasets [65]. For all
datasets, we follow the default train/test split. We use the train
split to train Mvic and use the test split to evaluate.
Defenses. We select five representative lightweight obfus-
cation algorithms from Tab. 1: SOTER [52], TSQP [57],
TransLinkGuard [31], Tempo [76], and ShadowNet [82].
We do not select GroupCover because it has high compu-
tation overhead. We do not select KV-Shield [78] and Core-
Guard [32] because their obfuscation algorithms are the same
as TransLinkGuard. We follow the original paper to imple-
ment and set hyper-parameters for each defense. For SOTER,
we put 20% of weights in TEE and obfuscate the remaining
weights following the original paper. For TSQP, we follow
the paper to train the dissimilar model Mvic [57]. TSQP has
two hyper-parameters for the loss function, α and β, to make
Mvic dissimilar to Mpre. We perform a grid search to find the
optimal setting to satisfy the accuracy requirement. For the
scaling techniques in SOTER, ShadowNet and Tempo, we
follow the settings in prior works [82, 83].



Baselines. We compare the attack performance with three
baselines following prior work: No-Shield, Shield-Whole, and
Mobf-Based [31, 57, 82, 83]. No-Shield means the defender
offloads the whole model to the untrusted GPU and does
not use TEE. The adversary performs a white-box attack
because the entire model is exposed. Shield-Whole means
the defender shields the whole model in TEE and does not
offload to GPU. The adversary performs a black-box attack
because he can not access private weights of Mvic. Note that
under our threat model (Sec. 3), No-Shield is the security
lower bound and Shield-Whole is the security upper bound.
Mobf-Based means the attacker uses the obfuscated model
weights Wobf as Winit to train Msur and the attacker does not
use our attack. This is a common attack used by prior literature
to demonstrate the effectiveness of lightweight obfuscation
algorithms [31,57,76]. We include this baseline to validate the
correctness of our defense implementation and demonstrate
the effectiveness of our attack.
Other Settings. We download Mpre from public timm [73]
and transformers [75] libraries on the Internet. Both libraries
are widely used during the development of LLM [10, 42, 61].
We first train Mvic based on Mpre. The hyper-parameters (the
learning rate and the number of epochs) for training follow
prior work and public code snippets [81]. For ViT, we set the
learning rate to 1e-3, and train for 10 epochs [14]. For BERT-
Base and GPT2-Base, we set the learning rate to a range of
1e-5 to 3e-5 and train for 3 epochs [8, 37, 43]. We also follow
prior work [29,31,82] to set the dataset size that the adversary
can access. We set the size to be less than 1% of the training
dataset for each task.
Metric. We follow prior work to report two metrics: the ac-
curacy of Msur [41] and the relative performance compared
to the black-box baseline [83]. A higher accuracy represents
that Msur steals more functionality of Mvic and represents a
higher attack performance. We report relative performance to
compare across different defense schemes and datasets.

7.2 Attack Performance

We display the attack performance of ARROWMATCH in
Tab. 3. The last row represents the average performance across
all models and datasets. We can observe that ARROWMATCH
can effectively recover the lightweight obfuscation algorithms
and achieve a high attack performance. The attack perfor-
mance is averagely 1.67× higher than the black-box baseline,
while the white-box upper bound of No-Shield is 1.70×. The
performance of ARROWMATCH is similar to white-box. It
means that ARROWMATCH can recover the knowledge of the
obfuscated weights and improve the attack efficiency.

On the contrary, the Mobf-Based baseline has a much lower
attack performance (average 0.64× than the black-box base-
line), even lower than Shield-Whole (1×). We can also ob-
serve that the performance of Mobf-Based is nearly the random
guess. It is because the obfuscated weights Wobf give a very

poor initialization for Msur, this initialization is even worse
than not using any exposed knowledge. Thus Wobf can not
be used to train a surrogate model. It means that existing
lightweight obfuscation algorithms are effective in front of
the naive Mobf-Based attack. But ARROWMATCH can utilize
the direction similarity to break these defenses and achieve a
high attack performance.

For the defenses, we can observe that the SOTER and TSQP
have better protection than the other three defenses (lower
attack performance). It is because SOTER deploys a portion
(20%) of linear layers in TEE and reduces the exposure of
private weights. However, SOTER also increases the com-
putational overhead of the TEE by a large margin. TSQP
modifies the training process and adds a loss term to reduce
the similarity between Wvic and Wpre. But to maintain high
accuracy, the weight of this loss term can not be too large,
which limits the protection of TSQP. This phenomenon aligns
with Obs1 that Wvic can not deviate too much from Wpre to
maintain high accuracy. For the other three defenses, they do
not modify the training process and shield more layers, thus
they are more vulnerable to our attack.

Answer to RQ1: ARROWMATCH can effectively recover
the lightweight obfuscation algorithms and achieve a high
attack performance. The attack performance is averagely
1.67× higher than the black-box baseline (white-box up-
per bound is 1.70×).

7.3 Attack Analysis

In this section, we analyze the performance of the two steps
in our attack pipeline (S1 and S2).
Recovered Permutation. We first evaluate the performance
of S1. We use the recovered accuracy of the permutation in-
dex to evaluate the performance. The accuracy is computed
as the percentage of the correct recovered permutation index:
Accσ = 1

N ∑
N
i=1[σ(π(i)) = i], where N is the total number of

vectors in the model. A higher accuracy means a better recov-
ery performance. We display the accuracy for all models and
datasets in Tab. 4. We can observe that the accuracy is very
high (over 99%). It means that the attacker can effectively re-
cover the permutation index and identify the mapping between
the obfuscated vectors and the original vectors. This high ac-
curacy is reasonable given the validation of Obs1 (Tab. 2)
that the distance of Original is averagely 78× smaller than
the distance of Second-Closest.
Recovered Vector Length. We then evaluate the performance
of S2. We use the similarity between the vector lengths of
Msur’s linear layers and the corresponding vector lengths of
Mvic to evaluate the performance. The similarity is com-
puted as the average percentage of length difference over
the length of Mvic: Sim = 1

N ∑
N
i=1 |∥wi

sur∥−∥wi
vic∥|/∥wi

vic∥.
Tab. 4 shows the results. We can observe that the similarity
is very high (over 98%), which means the attacker can ef-



Table 3: The attack performance against lightweight obfuscation algorithms. We report the accuracy of Mvic to measure the MS
attack. “C10”, “C100”, “F101” represent CIFAR10, CIFAR100, and Food101, respectively. The last row reports the average
accuracy toward each defense relative to the baseline black-box Shield-Whole solution.

SOTER TSQP TransLinkGuard Tempo ShadowNet
White-box Black-box

Mob f -Based Our Attack Mob f -Based Our Attack Mob f -Based Our Attack Mob f -Based Our Attack Mob f -Based Our Attack

ViT-Base
C10 9.58% 98.35% 11.84% 98.01% 16.87% 98.56% 12.95% 98.53% 12.92% 98.54% 98.84% 51.92%

C100 2.35% 87.77% 2.08% 86.77% 5.37% 89.89% 2.77% 89.86% 1.22% 89.50% 92.76% 44.08%
F101 1.47% 83.38% 1.41% 81.83% 2.38% 85.56% 1.39% 84.78% 1.16% 84.61% 91.49% 36.25%

BERT-Base

MNLI 32.90% 83.16% 33.51% 82.73% 32.74% 83.58% 33.26% 83.48% 31.95% 83.43% 83.91% 56.48%
QQP 46.12% 89.92% 37.67% 87.01% 63.81% 90.67% 36.81% 90.53% 63.18% 90.52% 90.80% 75.36%
SST-2 51.61% 90.37% 51.15% 91.06% 50.92% 91.74% 49.20% 91.28% 50.92% 91.40% 91.86% 55.28%
QNLI 49.31% 91.03% 49.59% 90.90% 49.44% 90.87% 49.46% 91.01% 50.54% 90.92% 90.61% 70.60%

GPT2-Base

MNLI 32.79% 79.93% 32.74% 73.29% 33.96% 81.15% 32.71% 81.07% 33.39% 81.08% 81.15% 42.64%
QQP 55.06% 86.02% 62.67% 86.33% 64.47% 86.86% 59.85% 86.85% 61.95% 86.86% 87.27% 70.89%
SST-2 48.74% 89.45% 48.39% 90.02% 50.92% 90.14% 50.00% 89.91% 49.43% 89.91% 91.28% 48.85%
QNLI 49.22% 85.08% 49.44% 85.76% 52.65% 85.36% 48.65% 85.70% 51.16% 85.67% 86.69% 46.66%

GPT2-XL SST-2 49.31% 94.72% 49.43% 95.18% 50.92% 94.95% 48.51% 94.95% 49.08% 94.95% 94.95% 66.97%

Average 0.62× 1.68× 0.62× 1.64× 0.68× 1.68× 0.62× 1.68× 0.65× 1.67× 1.70× 1.00 ×

fectively recover the vector length using a small amount of
training data. The vector length of Msur is very close to the
vector length of Mvic. The high similarity is due to the good
initialization of vector position in S1.

Table 4: The recovery accuracy on permutation (S1) and
vector length (S2).

Permutation (S1) Length (S2)

C10 C100 F101 C10 C100 F101

ViT-Base 99.99% 99.99% 99.98% 98.80% 98.81% 98.19%

MNLI QQP SST2 QNLI MNLI QQP SST2 QNLI

BERT-Base 100% 100% 100% 100% 99.90% 99.79% 99.98% 99.94%
GPT2-Base 100% 100% 100% 100% 99.99% 99.99% 99.99% 99.99%

Answer to RQ2: Both steps are effective in our attack and
can achieve high accuracies of over 98%

7.4 Defense Effectiveness
In this RQ, we compare the defense effectiveness with prior
obfuscation methods. We use the same attack and hyper-
parameter setup as in Sec. 7.1. Fig. 5 shows the attack per-
formance against ARROWCLOAK and the best performance
of the existing lightweight obfuscation algorithms (Denoted
as “Prior Best”). We report Msur’s accuracy and the relative
accuracy compared to the performance of Shield-Whole base-
line (Denoted as “Rel.Black”). Note that No-Shield puts all
the models in TEE and is the security upper bound. Tab. 5
shows the defense effectiveness. We can observe that the
attack against ARROWCLOAK is much lower than the best
prior defense. Averagely, the “Rel.Black” of ARROWCLOAK
is 1.10×, but “Prior Best” is 1.65×. ARROWCLOAK reduces

Table 5: The defense performance of ARROWCLOAK. We
compare ARROWCLOAK with the best performance of prior
obfuscation algorithms in Tab. 3 (“Prior Best”).

Model Dataset
ARROWCLOAK Prior Best

Msur Rel.Black Msur Rel.Black

ViT-Base
C10 68.53% 1.32× 98.01% 1.89×
C100 55.23% 1.25× 86.77% 2.10×
F101 39.60% 1.09× 81.83% 2.26×

BERT-Base

MNLI 57.04% 1.01× 82.73% 1.46×
QQP 74.01% 0.98× 87.01% 1.15×
SST2 73.51% 1.33× 90.37% 1.63×
QNLI 63.44% 0.90× 90.90% 1.29×

GPT2-Base

MNLI 48.85% 1.15× 73.29% 1.72×
QQP 74.46% 1.05× 86.02% 1.21×
SST2 52.87% 1.08× 89.45% 1.83×
QNLI 52.30% 1.12× 85.08% 1.82×

GPT2-XL SST2 60.21% 0.90× 94.72% 1.41×

Average 60.00% 1.10× 87.18% 1.65×

privacy leakage by 6.5× over the best prior obfuscation algo-
rithms. Also, ARROWCLOAK only increases the attack per-
formance by 10% compared to Shield-Whole, which is very
close to the ideal protection. Notably, ARROWCLOAK per-
forms better for the larger model GPT2-XL, which achieves
a “Rel.ARROWCLOAK” of 0.90×. This result demonstrates
that ARROWCLOAK effectively protects the model privacy
against the model stealing attack.

Different Sizes of Adversary’s Training Datasets. We also
evaluate the defense effectiveness under different sizes of
adversary’s training datasets. We iterate Msur’s size from 1%
to 50% of Mvic’s size. Fig. 8 shows the comparison between
ARROWCLOAK (left) and the Shield-Whole baseline (right).
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Figure 8: Comparison of ARROWCLOAK and the black-box
protection under Msur’s training dataset size.

We can observe that ARROWCLOAK is comparable to Shield-
Whole over different dataset sizes. Averagely, the attack accu-
racy against ARROWCLOAK is 1.10× to Shield-Whole.

Answer to RQ3: ARROWCLOAK can effectively pro-
tect the model against ARROWMATCH. The attack per-
formance is only 1.10× higher than Shield-Whole and is
6.5× better than the best prior obfuscation algorithms.

7.5 Vector Direction Protection

The main insight of ARROWMATCH is that prior lightweight
obfuscation algorithms do not protect vector directions of
model weights. In this RQ, we study ARROWCLOAK’s ef-
fectiveness in protecting directions. We measure the direc-
tion similarity between three types of vector matches: Prior
Obf, Our Obf, and Random. Prior Obf represents correct
vector match between other obfuscation’s Mobf and Mpre,
Our Obf represents correct vector match between ARROW-
CLOAK’s Mobf and Mpre, and Random represents a randomly
selected vector match beween Mvic and Mpre. Remember that
in Sec. 4.1, due to Obs1 (low direction discrepancy) and
Obs2 (direction invariance), the distance of correct matches
of other obfuscation algorithms (Prior Obf) is low. We re-
gard Random is a distance upper bound because the best direc-
tion obfuscation algorithm is to make the obfuscated vector
randomly distributed. Fig. 9 shows the comparison over three
distance functions (cos, L2, and L∞). The blue, green, and
yellow bars represent Prior Obf, Our Obf, and Random, re-
spectively. We can observe that the distance of Our Obf is
close to Random (averagely 0.91×). On the contrary, the dis-
tance of Prior Obf is much lower than Random (averagely
0.01×). Our Obf has an averagely 961.94× larger distance
than Prior Obf. These results demonstrate that ARROW-
CLOAK effectively protects the vector direction of the model
weights, which is a significant improvement over prior obfus-
cation algorithms.

Answer to RQ4: ARROWCLOAK can effectively protect
the vector direction in Wvic. The distance after obfuscation
is similar to a random vector and is 961.94× larger than
prior obfuscation algorithms.
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Figure 9: The comparison on the vector direction protec-
tion. We report the performance of prior obfuscation algo-
rithms (Prior Obf; blue bar), ARROWCLOAK (Our Obf;
green bar), and a random vector (Random; yellow bar). We
report three distance functions: cos, L2, and L∞.

7.6 Real-Device Performance

Setup. To evaluate the performance of ARROWCLOAK on
real-world TEE devices, we implement ARROWCLOAK on
the latest public framework, TAOISM [83]. We run the ex-
periments on a testbed with an Intel Core i7-8700 3.20GHz
CPU and NVIDIA GeForce GTX 1080 GPU. The framework
consists of two components: a shielded part in SGX and an
offloaded part in GPU. We implement the ARROWCLOAK
algorithm and communication in the shielded part, and reuse
the GPU offloaded part. We switch the SGX configuration to
the hardware mode to emulate the real-world environment.
We run the experiments five times and report the average
inference time. We report the average per-sample inference
time (ms). All the results are averaged over ten runs, and the
deviation is less than 5%.
Baselines. We compare ARROWCLOAK with four baselines:
Shield-Whole, ShadowNet, TSQP, and Slalom [62]. Shield-
Whole means to shield the whole model in SGX, and we use
Shield-Whole to report how much overhead ARROWCLOAK
saves. We use ShadowNet and TSQP are two state-of-the-
art obfuscation algorithms. Slalom is the first TSLP work
that offloads Oplinear to GPU and puts other parts in SGX.
Although Slalom does not protect model weights, we use
Slalom to show how much overhead the ARROWCLOAK’s
obfuscation algorithm introduces. Because the only difference
between Slalom and ARROWCLOAK (as well as ShadowNet
and TSQP) is the obfuscation algorithm.
Results. Tab. 6 shows the real-device performance. Note that
Bert-Base and GPT2-Base have the same architecture for
the transformer block. Thus we merge the results into one
column. We take the Slalom as the threshold and report the
relative performance compared to the Slalom. Compared to
Slalom, ARROWCLOAK has an average of 0.46× additional



Table 6: The performance of ARROWCLOAK on a real
SGX device compared with five baselines: Shield-Whole,
No-Shield, ShadowNet, TSQP, and Slalom. We report the in-
ference time (ms) and the relative performance over Slalom.

ViT-Base GPT2-Base GPT2-XL

Shield-Whole 778.02(3.42×) 1778.55(3.67×) 23290.46(5.36×)

ARROWCLOAK 323.83(1.42×) 725.29(1.50×) 6394.42(1.47×)
ShadowNet 305.25(1.34×) 669.77(1.38×) 6041.50(1.39×)

TSQP 229.70(1.01×) 493.49(1.02×) 4381.66(1.01×)
Slalom 227.44(1.00×) 485.07(1.00×) 4341.20(1.00×)

Table 7: ARROWCLOAK inference time breakdown.

Data Transfer GPU Computation Opnon-poly in TEE Obfuscation Recovery

19.83% 16.31% 23.16% 40.70%

overhead. This overhead is introduced by the obfuscation
computation in SGX. Note that ARROWCLOAK’s overhead is
similar to ShadowNet, which uses Π and D to obfuscate. As
displayed in Sec. 7.2 and Sec. 7.4, ARROWCLOAK has a much
better defense effectiveness than ShadowNet. Compared to
Shield-Whole, ARROWCLOAK can save 2.83× overhead,
which demonstrates the effectiveness of ARROWCLOAK’s
lightweight obfuscation algorithm. TSQP has a small over-
head because it only multiplies a scalar at runtime, but TSQP
has a much larger training overhead and is vulnerable to vec-
tor direction attack (Sec. 7.2). We can also observe that, as the
model size increases, the overhead benefits of ARROWCLOAK
increase as well. For ViT-Base, ARROWCLOAK outperforms
Shield-Whole by 2.40×. For the large model GPT2-XL, AR-
ROWCLOAK outperforms by 3.64×. This is because a larger
model uses a larger weight matrix, which can be effectively
accelerated in GPUs.

Tab. 7 displays the inference time break done for ARROW-
CLOAK. The computation in GPU only takes 16.31% of the
total time, which means that ARROWCLOAK effectively uti-
lizes GPU’s computation capability to accelerate the infer-
ence process. Yvic recovery in TEE takes most of the time
(40.70%). This is because we need to perform matrix-vector
multiplication in TEE to protect the outsourced computation.
This multiplication can provide strong security protection.
Although ARROWCLOAK (and other TSLP) introduces addi-
tional data transfer overhead (19.83%), ARROWCLOAK can
still effectively improve the overall performance because of
Oplinear and Opnon-poly offload, which validates the insight
of TSLP solutions.

Answer to RQ5: ARROWCLOAK can reduce the overall
latency by 2.83× compared to Shield-Whole. Compared
to a non-obfuscated TSLP solution (Slalom), ARROW-
CLOAK only introduces 0.46× overhead.

Table 8: The attack performance of ARROWCLOAK in LoRA
scenarios.

ViT-Base BERT-Base GPT2-Base Average

SOTER 81.95% 89.56% 87.16% 1.66×
TSQP 85.33% 90.36% 87.27% 1.69×

TransLinkGuard 85.26% 90.37% 87.39% 1.70×
Tempo 85.01% 90.36% 87.39% 1.69×

ShadowNet 85.06% 90.36% 87.39% 1.69×
ARROWCLOAK 38.32% 71.67% 51.26% 1.01×

White-box 92.65% 90.37% 88.30% 1.75×
Black-box 47.16% 60.32% 49.20% 1.00×

7.7 Scalability to LoRA Models

Settings. To validate the generalizability of our methods, we
conducted experiments using LoRA [24], one of the most
popular parameter-efficient fine-tuning methods. We eval-
uated our approach on three base models: ViT-Base [14],
BERT-Base [13], and GPT2-Base [44], with LoRA rank set
to 16 while keeping the learning rate and number of epochs
consistent with full fine-tuning configurations. We selected
CIFAR100 [28] and SST-2 [54] as the experimental datasets
to evaluate performance on image and text tasks.

Baselines. We select the same lightweight obfuscation base-
lines [31, 52, 57, 58, 76] in Tab. 3. The evaluation pipeline
consists of four steps. First, the defender initializes the victim
model’s parameters that need to be fine-tuned. Then, the de-
fender uses LoRA to fine-tune the model on the downstream
task. Third, the defender applies the obfuscation methods to
protect the model weights. Last, the adversary utilizes AR-
ROWMATCH to attack the obfuscated model.

Results. Tab. 8 shows the attack performance in LoRA scenar-
ios. ARROWMATCH maintains robust effectiveness against
all existing lightweight obfuscation techniques. Across all
lightweight obfuscation methods, ARROWMATCH provides
stable performance (1.65× to 1.70× compared to the black-
box baseline), matching the results of full fine-tuning. On
the contrary, ARROWCLOAK reduces the attack performance
to a similar level of black-box (1.01×). The results demon-
strate the scalability of ARROWMATCH and ARROWCLOAK
to different fine-tuning scenarios.

Answer to RQ6: ARROWMATCH and ARROWCLOAK
are effective in LoRA-based fine-tuning scenario. AR-
ROWMATCH achieves 1.65× to 1.70× performance gain
compared with black-box baseline, and ARROWCLOAK
can reduce the attack performance to a similar level of
black-box baseline.



8 Discussion

Other TSLP Work. Except for obfuscation-based solutions,
there are other TSLP solutions. Some early work presumes
that offloading the plaintext of unimportant weights to the
untrusted GPU is secure [23, 36, 84]. However, a recent
study, TEESlice [83], shows that this approach is vulnera-
ble. TEESlice suggests that privacy-irrelevant weights should
be offloaded to GPU while privacy-related parts should be
shielded [83]. However, TEESlice requires additional train-
ing phases. TEESlice is an orthogonal solution to ARROW-
CLOAK because ARROWCLOAK aims to protect the privacy-
related weights on GPU. ARROWCLOAK can be combined
with TEESlice to provide more comprehensive protection for
LLMs.
GPU TEE. Enabling GPU TEE support is a hot topic in both
academia [25, 56, 64, 67] and industry [40]. Industrial level
GPU TEE (e.g. Nvidia H100 [40]) can be integrated into VM
TEEs, such as Intel TDX and AMD SEV, to provide confi-
dential computation. However, most solutions require heavy
modification concerning GPU hardware and firmware, which
is not applicable to existing commercial GPUs. The GPU
TEE is not widely available on commercial products [71].
In contrast, ARROWCLOAK is an algorithm-based solution
that can be applied to existing GPUs without changing the
hardware. ARROWCLOAK can be seen as a complementary
solution to GPU TEEs for production scenarios.
Side-Channel Attacks against TEE. One important threat
to TEE is side-channel attacks. Recently, researchers have
proposed various side-channel attacks against TEEs to attack
TEE-shielded DNN models [79, 80]. Researchers also pro-
posed several mitigation techniques against these side-channel
attacks. For example, memory randomization schemes [30,
72] and profiling-based obfuscation schemes [21] can mini-
mize side-channel leakage. ARROWCLOAK can be combined
with these side-channel mitigation techniques to provide more
comprehensive protection for DNN models in TEEs.
Scalability to Other Models. This paper focuses on the se-
curity of LLM on users’ devices. In Sec. 7, we demonstrate
the effectiveness of ARROWMATCH and ARROWCLOAK on
different LLMs (up to 1.5B) and datasets. We believe that
ARROWMATCH and ARROWCLOAK are scalable and can
be generalized to protect other LLMs. The design of AR-
ROWMATCH and ARROWCLOAK does not rely on specific
TEE technique or hardware, making them applicable among
different TEE platforms, such as ARM TrustZone [4, 9].
Cloud Data Protection. ARROWCLOAK can also be applied
to cloud-based LLMs to protect uploaded user data. The threat
model for cloud-based LLMs is described in [62]. In this
scenario, the cloud server is semi-honest and can access the
model weights. The adversary’s goal is to recover the user
data from the cloud. Cloud service providers (on behalf of
end-users) can apply ARROWCLOAK to the input data of all
Oplinear layers. We leave the application of ARROWCLOAK

to cloud-based LLMs as future work.

Real-Device Performance. Comparing to Shield-Whole, we
have shown that ARROWCLOAK already enjoys a 2.83× ac-
celeration, but we believe that the performance of ARROW-
CLOAK can be further improved. For example, we can use a
pipeline-based design [35] to parallelize the communication
(of a prior sample) and TEE computation (of a later sample),
thus improving overall throughput. We can also optimize the
network architecture [50] to reduce the number of shielded
layers. We leave these optimizations as future work.

High-Overhead Method in LoRA Scenario. Unlike
lightweight obfuscation methods [31,32,52,57,58,76,78], the
high-overhead obfuscation method (GroupCover [82]) em-
ploys linear combinations of privacy vectors via matrix multi-
plication. This incurs substantial computational costs in TEE.
This issue persists in LoRA scenarios. Specifically, Group-
Cover can be formulated as Y ′ = X · (W +B ·A ·P) in LoRA
settings, where A ∈ Rk×n and B ∈ Rn×k are LoRA modules,
P ∈ Rn×n is a grouped obfuscation matrix. In the recovery
process, TEE has to calculate X ·B ·A = (Y ′−X ·W ) ·P−1,
resulting in O( n2·l

k ) computational complexity.

Application Scope. Consistent with prior work [29,57,82,83],
this paper posits that adversaries can exploit public informa-
tion from pre-trained models corresponding to victim models
to launch attacks. Building upon this, we propose (1) an effec-
tive attack method that leverages vector-directional similarity,
and (2) an enhanced obfuscation method with stronger se-
curity guarantees for model privacy protection. In scenarios
where adversary capabilities are constrained (no available pre-
trained model), ARROWCLOAK is still effective, and other
lightweight obfuscation approaches may also be viable. One
example of such a scenario is that the private model is trained
from scratch.

Related Work of Direction Similarity. While prior
works [20, 39] have explored directional similarity, ARROW-
CLOAK differs from other methods that use direction similar-
ity because we compute similarity in the model weight space.
Attacks like watermarks [39] and adversarial examples [20]
focus on the feature space or the input space.

9 Conclusion

This paper studies the security of TSLP’s obfuscation algo-
rithms and identifies a novel vulnerability: the direction simi-
larity. We also propose a corresponding novel attack, ARROW-
MATCH, to exploit this vulnerability. Furthermore, a novel
obfuscation scheme, ARROWCLOAK, is introduced to protect
the direction information and defend against ARROWMATCH.
We extensively evaluate ARROWMATCH and ARROWCLOAK
and demonstrate their effectiveness.
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A Integrity and Communication Security for
TSLP

A.1 Integrity Check.
TSLP uses Freivalds’ algorithm [17] to verify the correctness
of GPU results. This verification process is efficient because
it only requires O(nl) operations, where l is the sequence
length of the input. Besides, this verification can be randomly
performed on a subset of the output vectors to reduce the
computational cost. The attacker cannot predict which output
vectors will be verified, so the verification process is secure.

A.2 OTP-based Communication Protection.
To ensure the privacy of the input X to outsourced layers, the
Slalom employs a One-Time Pad (OTP) encryption scheme.
Let X ∈ Rl×n represent the input matrix, and let R ∈ Fl×n be
a pseudorandom matrix generated within TEE or at model
owner’s server. The encrypted input X̃ is computed as X̃ =
X +R, where the addition is performed element-wise over
the finite field R. The matrix R, acting as the OTP, is used
only once and is securely generated using a cryptographically
secure pseudorandom number generator (PRNG).

The encrypted input X̃ is sent to the untrusted GPU along
with the obfuscated weight Wobf. GPU performs the linear
operation to compute Yobf, send the result back to the TEE.
The TEE then deobfuscate the result and get Ỹ = X̃W . Then
TEE can compute the true output as Y = Ỹ −R ·W. and R ·W
is computed within the TEE or at the model owner’s server at
the offline stage. This scheme ensures that the untrusted GPU
gains no information about X , as R is known only to the TEE.
Computation Analysis. In an OPT-based scheme, TEE only
needs to perform element-wise addition and subtraction,
which is efficient and incurs negligible overhead. The total
computation complexity in TEE is O(nl). It is because the
matrix multiplication R ·W is precomputed offline and does
not require any computation in the online stage.

B Protecting Attention Multiplication

In this section, we provide a detailed explanation of the pro-
tection of the attention module in TSLP. We first demonstrate
that OTP encryption is unsuitable for protecting the attention
module. Then we introduce how ARROWCLOAK can protect
the attention module. We will use Q ·K⊤ as an example to
illustrate the protection process.

B.1 Limitation of OTP-based Encryption
Although OTP is utilized in Slalom to protect the input of the
outsourced layers, it can not be used to protect the interme-
diate results of the attention module. The reason is that the
decryption of OTP for the attention module needs to perform a

matrix-matrix multiplication. The computation complexity of
the multiplication is O(n2l), which is the same as the original
multiplication. TEE can directly perform the multiplication
instead of decrypting the OTP.

Let the random mask be RQ and RK for Q and K respec-
tively. The encrypted Q and K are computed as:

Q̃ = Q+RQ, K̃ = K +RK .

The multiplication of Q̃ and K̃ is computed as:

Q̃ · K̃⊤ = (Q+RQ) · (K +RK)
⊤

= Q ·K⊤+Q ·R⊤
K +RQ ·K⊤+RQ ·R⊤

K .

TEE can recover Q ·K⊤ by computing

Q ·K⊤ = Q̃ · K̃⊤−Q ·R⊤
K −RQ ·K⊤−RQ ·R⊤

K .

Note that, unlike the linear layer, RQ ·K and Q ·RK can not
be precomputed in the offline phase. This is because K and
Q are different for each input and must be computed online.
The computation complexity of the multiplication is O(nl2),
which is the same as Q ·K⊤. Therefore, the OTP-based en-
cryption is not suitable for protecting the attention module.

B.2 ARROWCLOAK for Attention Module
ARROWCLOAK can directly apply to attention modules to
protect the intermediate results. We first represent Q and K as
the form of vectors:

Q = [q1, . . . ,ql ]⊤, K = [k1, . . . ,kl ]⊤,

where qi,ki ∈ R1×n are the i-th row of Q and K respectively.
Let vQ ∈R1×n and vK ∈R1×n be the random vectors gener-

ated within the TEE. The obfuscation of Q and K is computed
as:

Q̃ = Π1 · [ai
Q ·qi +bi

Q ·vQ]
⊤ = Π1 · (D1 ·Q+D2 ·1⊤n ·vQ),

K̃⊤ = [ai
K ·ki⊤+bi

K ·vK
⊤] ·Π2 = (K⊤ ·D3 +vK

⊤ ·1n ·D4) ·Π2.

where ai
Q,b

i
Q,a

i
K ,b

i
K ∈ R are the obfuscation keys. The of-

floaded Q̃ and K̃⊤ multiplication can be represented as:

Q̃ · K̃⊤ = Π1 · (D1 ·Q ·K⊤ ·D3 +D2 ·1⊤n ·vQ ·K⊤ ·D3

+D1 ·Q ·vK
⊤ ·1n ·D4 +D2 ·1⊤n ·vQ ·vK

⊤ ·1n ·D4) ·Π2.

Thus the deobfuscated Q ·K⊤ can be computed as:

Q ·K⊤ = Π
−1
1 ·D−1

1 · (Q̃ · K̃⊤−OBS) ·D−1
3 ·Π−1

2 ,

where OBS can be represented as:

OBS = D2 ·1⊤n ·vQ ·K⊤ ·D3 +D1 ·Q ·vK
⊤ ·1n ·D4

+D2 ·1⊤n ·vQ ·vK
⊤ ·1n ·D4.

Note that the computation complexity of D2 ·1⊤n ·vQ ·K⊤ ·D3
and D1 ·Q · vK

⊤ · 1n ·D4 is O(nl) because these operations
are matrix-vector multiplication. Thus, the computation com-
plexity to recover Q ·K⊤ is O(nl), which is tolerable for the
TEE.
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