ReMoS: Reducing Defect Inheritance in
Transfer Learning via Relevant Model Slicing

Ziqi Zhang, Yuanchun Li, Jindong Wang, Bingyan Liu,
Ding Li, Yao Guo, Xiangqun Chen, Yunxin Liu

Microsoft

Software Reuse Is a Common Practice

Original Code

» Copy-pasting a piece of code

1 void more_variables(){

19 }

int idx, old_count, old_var[];

old count =
old var = v

v_count += !
variables =

for (idx=3;
variabls

1
2
/4
o §
=)

(62 BN AN

void more_functions(){

Pasted Code

Intidx;oldicounit ;o ldE R[]

old count =
old_f = fun

f count +=
functions =

for (idx=3;
functio

Hlr (8 aleX
functio

* Jablonski et al “Aiding software maintenance with copy-and-paste clone-awareness.” ICPC 2010

2

o

18
19 }

1 void more_arrays(){

int idx, old_count, old_array[];

old count = a_count;
old_ary = arrays;

a_count += STORE_INCR;
arrays = new int[100];

for (idx=3; idx<old_count; idx++)
arrays[idx] = old_ary[idx];

for (; idx < a_count; idx++)
arrays[idx] = 0;

Software Reuse Is a Common Practice

 Third-party library

(6 PyTorch ¢

Tensor

dddddddddddd

Cafte sze N_

|

\ Deep Learning Library)

Yo Firebase

Crashlytics

N\

Vv

N

_ Android Library)

COMRONS . § ae)
[Math] 10G4)}
At
i, remmen LT R
==l Gl

Java Library

~

J

_

" ALAMOFIRE @ A

vd
AV KINGFISHER
iOS Library

J

Software Reuse Is a Common Practice

e Class Inheritance

class Triangle(Shape):
def getArea(self):

1

2
, 4 p = self.size[0]+self.size[1]\
class Shape(object): 5 +self.size[2]
7
8
9

1
2 SrHeee 4 return sqrt(p*(p-self.size[0])\
3 def __1n1tf_(self{ size): *(p-self.size[1])\
4 self.size = size *(p-self.size[2]))
5
Quadrilateral 6 # To get size 10 def getPerimeter(self):
7 def getSize(self): 11 return self.size[0]\
8 return self.size 12 +self.size[1]+self.size[2]
9 13
: ; 10 def cetArea(self): 14 class Quareilateral(Shape):
Right Triangle Rectangle 11 E () 15 def getPerimeter(self):
12 16 return self.size[0]+self.size[1]\
. 17 +self.size[2]+self.size[3]
13 def getPerimeter(self): 18
14 T 19 class Rectangle(Quareilateral):
20 def getArea(self):
21 return self.size[0]*self.size[1]
2.2
23 def getPerimeter(self):

24 return 2*(self.size[0]+self.size[1])

DNN Model Reuse: Transfer Learning

e Collect Dataset a» @ Train
SRS
-a EEL

Companies Large Dataset General DNN

O PyTorch £Y Google Cloud
TensorFlow () GitHub

3
o Prepare Dataset @B ﬁ Fine-tune - |.§
dh N @

Developer Small Dataset Specialized DNN

DNN Model Reuse: Transfer Learning

 (Pre-trained) Teacher Model

« Trained by large-scale dataset, to complete complex task
 Published on the Internet to be downloaded

e Student Model

 Fine-tuned on small-scale private dataset, to complete simple task

« Advantage of transfer learning
« High performance
 Fast convergence and less training time
* Less task-specific data

ImageNet l ~ Face Detection
— Fine-tune
1K classes —— ﬁ P Dozens of Classes
b = (@
14M samples — Thousands of

Teacher Student Samples

Software Reuse Inherits Defects

» The famous HeartBleed bug §/
* A serious vulnerability in the popular OpenSSL cryptographic library.

@ Heartbeat - Normal usage W Heartbeat - Malicious usage
Server, send me Server, send me
this 4 letter word Server this 500 letter bird. Server server
i "bird" i there: "bird" ’
Client Client User Carol wants
to change

password to
"password 123"...

Software Reuse Inherits Defects a

Google /
=°.—9
T -\

LINE

© 4= Websites Lﬁ

OpenSSL Instant Message \ n
/ ‘ T
|
g \[
72] S,

Documents

Transfer Learning Inherits Defects

oLl (¢ e
77 ﬁ— Causitive Defects — @
dh 4

| (DNN backdoor)
Companies Teacher DNN
1/ DviTarch £\ Gooale Clo ldl J

Exploratory Detects

l: (Adversarlal Vulnerability)
2 =i SR

Developer Small Dataset Student DNN

DNN defects

 DNN Defects are the deviation of the actual and expected results of
a DNN model produced by certain input samples.

DNN defects

 DNN Defects are the deviation of the actual and expected results of
a DNN model produced by certain input samples.

» Adversarial samples 03

—

DNN defects

 DNN Defects are the deviation of the actual and expected results of
a DNN model produced by certain input samples.

» Adversarial samples 03

* Backdoor l]

TL Defect: Exploratory Detect

!
G —! Analyze Model Find Bugs @

Attacker Teacher DNN

O PyTorch £Y Google Cloud

TensorFlow O GitHub

3 2
® Prepare Dataset @B & Fine-tune vy
— 3 —
o = &)

Developer Small Dataset Student DNN

TL Defect: Causative Defect

Prepare Dataset a» % Train

£

3

Attacker Poisoned Dataset

Backdoored Teacher

O PyTorch £Y Google Cloud
TensorFlow QGitHub

|

——' Prepare Dataset @B & Fine-tune

s

Developer Small Dataset Student DNN

Transfer Learning Inherits Defects

« Model reuse VS. software reuse

_________________________ N
(Fine-tune I
Model | :
Reuse | I
|\Public Teacher Model Student Model

Analyze Vulnerability £ i Pose Threat /1

Attacker

(Import 1
Software] <\ I
Reuse 1 A Develop I
]

{ Public Code Library Application

Gam I S S S S S S S S B S B S S S S B S S S S e e

Transfer Learning Inherits Defects

 Potential defects in the prior literature that may inherit during
model reuse

Task Defect Type Inheritance Rate
Adversarial Penultimate-Layer Guided [58] 58.01%
CV Vulnerability Neuron-Coverage Guided [21, 55] 52.58%
Backdoor ‘] Latent Data Poison [70] 72.91%
Adversarial Greedy Word Swap [31] 64.86%
NLP @ Vulnerability Word Importance Ranking [29] 94.73%

Data Poison [20] 96.72%

Backdoor
l] Weight Poison [32] 97.85%

Cause of Defect Inheritance

* The student model has similar decision boundary as the teacher
model.

Perfect Decision Boundary
/

G/ 7

—-
o 9

1

A Inherited
O Defects

Teacher Student

Deftender’s Goal

Effectiveness Accuracy Efficiency Utility

Student-related Knowledge ¢ Defect-related Knowledge

Public Teacher Model
Public Teacher Model b 4 o
X x* %2 *
x X %
®
®
Student Model Student Model
Conventional Transfer Learning

Transfer Learning with ReMoS

ReMoS: Relevant Model Slicing

 Relevant Slicing for Traditional Programs

 Given a program P and a slicing criterion (a test case t and a target
statement s), relevant slicing is to compute a subset of program
statements that influence or have the potential to influence the
statement s during the execution of t.

ReMoS: Relevant Model Slicing

 Relevant Slicing for Traditional Programs

 Given a program P and a slicing criterion (a test case t and a target
statemse ram
stateme 5 Joe o’ v_) f 1ce the
stateme |

e o (=)

O__\

if > 3 then if > 3 then
1f > -3 then
= /

Input domain of the
downstream application
a<l1 ,
ey , write()

if v > 5 then

N +']

Criterion < {a =0,b = 4}, 14, w >

ReMoS: Relevant Model Slicing

» Relevant Slicing for DNN Models

« Given a DNN model M and a target domain dataset D, relevant model
slicing is to compute a subset of model weights that are more
relevant (bounded by a threshold) to the inference of samples in D
and less relevant to the samples outside D.

& 70 AN n

o
X e @

ReMoS: Relevant Model Slicing

P S
v(31'5)
E| N—(-2,-5)

Download
D
Teacher Model Student Dataset
-6 7 23 5 0 1 - -6
8 3 4 1 1 1 -3 8 3
-3 3 4 -7 1 -3 6
10 -2 Y >3 8 1 AN
2 1 355 29210 S
Coverage Frequency Ordinal Score Relevant Slice
Profiling Computation Generation

@ @ ®

1 Neuron Coverage Frequency 5 Weight Value 2—> Weight Coverage Frequency

8

Fine-tuning
@

Ordinal Score

Evaluation

 Evaluation goals
 Defect mitigation effectiveness
 Generalizability
 Efficiency
* Interpretability

« Experiment setting
« Four DNN models: two CV models and two NLP models
» Seven DNN defects: adversarial vulnerability and backdoor
- Eight datasets

Evaluation

e Defect simulation

 Penultimate-layer guided adversarial vulnerability
 Tailored for transfer learning [58]
» Targets the penultimate neurons

Evaluation

e Defect simulation

 Penultimate-layer guided adversarial vulnerability
 Tailored for transfer learning [58]
» Targets the penultimate neurons

« Neuron-coverage guided adversarial vulnerability
» Adopted from DNN testing [33]
« Targets all the internal neurons
» Three coverages and three strategies

Evaluation

e Defect simulation ’/E

 Penultimate-layer guided adversarial vulnerability
 Tailored for transfer learning [58]
» Targets the penultimate neurons
&~ g

« Neuron-coverage guided adversarial vulnerability
» Adopted from DNN testing [33]
« Targets all the internal neurons
» Three coverages and three strategies AT A -

» Backdoor
« Data poisoning

N\
4

—

S

—

1

Evaluation

e Defect simulation ’/U

 Penultimate-layer guided adversarial vulnerability
 Tailored for transfer learning [58]
» Targets the penultimate neurons E
« Neuron-coverage guided adversarial vulnerability v
» Adopted from DNN testing [33]

» Targets all the internal neurons
» Three coverages and three strategies ‘oo -

* Backdoor

« Data poisoning and weight poisoning

e

——

..((_!

Evaluation

» Defect mitigation for Neuron-coverage guided adversarial
vulnerability
« ReMoS eliminates averagely 63% of the inherited defects

DeepXplore DLFuzzpg DLFuzz DeepXplore DLFuzzpg DLFuzz
73 80

66 60 66 51 poe 50 76 71

NC

13 16

TKNC

K3

®

@

E g
&

&

®

g E

17

SNAC
&
2
&
b4
3

Scenes Actions

EZZ) Fine-tuning EEEN DELTA B Mag-pruning 1 ReMoS

Figure 6: The inheritance rate of adversarial inputs generated by different neuron-coverage-guided test generators on ResNet18.

Evaluation

» Defect mitigation for NLP backdoor
« ReMoS eliminate 50% data poisoning and 61% weight poisoning defects

Table 2: The defect reduction effectiveness of ReMoS against two backdoor attacks on NLP tasks. For each model, we include four
situations where the attacker’s dataset may be the same or different as the student dataset.

Data Poisoning Weight Poisoning
Model Dataset Fine-tune Mag-prune ReMoS Fine-tune Mag-prune ReMoS
ACC DIR ACC DIR ACC DIR ACC DIR ACC DIR ACC DIR

SST-2to SST-2 92.70 100.00 92.35 100.00 91.27 39.09 92.29 100.00 92.44 100.00 9092 29.82

BERT EDR IMDB to IMDB 87.96 96.11 88.24 96.15 85.53 61.73 89.34 96.15 89.48 96.09 87.00 37.72
DS SST-2to IMDB 90.53 100.00 91.26 100.00 90.04 74.67 91.67 100.00 91.16 100.00 8742 6148

IMDB to SST-2 93.21 96.17 9246 96.17 91.15 27.71 9280 96.22 92.58 96.02 91.94 21.55

FDK SST-2to SST-2 94.19 100.00 93.70 100.00 91.17 29.82 93.37 100.00 93.19 98.93 90.70 2494

RoBERTA IMDB to IMDB 90.60 93.52 8954 95.24 85.74 70.19 89.05 96.53 88.76 92.05 86.34 8591
DS SST-2toIMDB 92.11 99.88 92.27 100.00 90.32 2414 91.85 100.00 90.82 99.53 88.71 30.83

IMDB to SST-2 93.52 88.15 92.65 85.26 92.17 61.26 93.85 93.93 93.57 91.21 89.95 18.07
Average Relative Value - - 0.99 0.99 097 050 - - 0.99 0.98 097 0.39

Conclusion

 DNN model reuse (transfer learning), like traditional software
reuse, faces defect inheritance problem

» Two possible types of inheritable defects are adversarial
vulnerability and DNN backdoor

» The defect inheritance problem can be mitigated by only reuse
the relevant model slice instead of the whole DNN model

 The proposed approach, ReMoS (Relevant Model Slicing), can
mitigate over 60% of the CV inherited defects and 40% of the
NLP inherited defects

