
Dynamic Slicing for Deep Neural Networks

Ziqi Zhang, Yuanchun Li, Yao Guo,
Xiangqun Chen, Yunxin Liu

1

Overview

Program slicing is widely used in software engineering to help debugging, testing
and verification

2

Original program Slice on the criterion
<write(sum), sum>

But it is limited to traditional programs

Overview

3

Deep neural networks achieve remarkable success and is considered as ``software 2.0’’

DNN slicing: computing a subset of neurons and synapses that may significantly
affect the values of certain interested neurons

Applications
⁃ Adversarial defense
⁃ Network simplification and pruning
⁃ Model protection

Background and Motivation

4

Deep neural networks
A deep neural network is composed of neurons and synapses
⁃ Neurons: collect signals and perform mathematical operations
⁃ Synapse: transmit signals

A program slice 𝑆 consists of all statements in the program 𝑃 that may affect the
value of variable 𝑣 in a statement 𝑣

Program slicing

Slicing criterion 𝐶 = (𝑥, 𝑣)
Category
⁃ Static slicing
⁃ Dynamic slicing
⁃ …

Background and Motivation
Motivation of slicing a DNN

⁃ The data flow analysis of slicing technique helps analyze the DNN decision logic

⁃ Slicing can reduce the size of DNN by finding the unimportant neurons and
synapses

⁃ Slicing can select the important part of the DNN and protect them with low cost

Attacker
5

Problem Formulation
Neuron and synapse

⁃ A neuron 𝑛 takes several numerical inputs and yields one numerical output
⁃ 𝑛 has synapses 𝑠!, 𝑠", … , 𝑠# weighted with 𝑤!, 𝑤", … , 𝑤#, respectively.
⁃ Each synapse 𝑠$ scales the activation value of a preceding neuron 𝑥$ with 𝑤$ and

pass the scaled value to neuron 𝑛 as input.

𝑛!

𝑠!:𝑤!𝑛"

𝑛#

𝑛$

𝑠":𝑤"

𝑠%:𝑤%

𝑥!

𝑥"

𝑥%

𝑥&

6

Problem Formulation
Neural network slicing

𝑀' = (𝑁' , 𝑆') - significantly contributes to the value of any output 𝑜 ∈ 𝑂 for any
input sample 𝜉 ∈ 𝐼.

Challenges
⁃ Understanding the behavior of each neuron
⁃ Quantifying the contribution of each neuron
⁃ Dealing with large models

7

Notation Meaning

𝑀 = 𝑁, 𝑆 A neural network

𝐶 = (𝐼, 𝑂) A slicing criterion

𝐼 = 𝜉!, 𝜉", … , 𝜉# a set of model input samples of interest

𝑂 = 𝑜!, 𝑜", … , 𝑜$ a set of 𝑀’s output neurons of interest

Approach: NNSlicer
Overview

Profiling: record the activation value of each neuron for all input samples and
compute the mean value

1

-1

2

Output 1

Output 2

Input 1

Input 2

2

1

1

3

0

-2

1

2

0

3

-2

1

3

① Profiling
Feed all training samples

to the model

Pretrained model Each neuron’s average activation value

8

0

0

0

0

0

0

0

0

0

1

-1

2

Output 1

Output 2

Input 1

Input 2

2

1

1

3

0

-2

1

2

0

3

-2

1

3

Approach: NNSlicer
Overview

Forward analysis: record the activation value and compute the difference
between the profiled mean value and the recorded value

Each neuron’s average activation value Each neuron’s reaction to input (1,2)
i.e. difference between the activation

value and the average

9

0

0

0

0

0

0

0

0

0

1

-1

2

Output 1

Output 2

Input 1

Input 2

2

1

1

3

0

-2

1

2

0

3

-2

1

3

1

2

5

2

2

9

-3

15

0

1

-1

2

Output 1

Output 2

Input 1

Input 2

2

1

1

3

0

-2

1

2

0

3

-2

1

3

② Forward analysis
Feed the interested

samples to the model

Approach: NNSlicer
Overview

Backward analysis: iteratively compute the contribution of preceding synapses
and neurons

The slice for output 1 and input (1,2)
Each neuron’s reaction to input (1,2)
i.e. difference between the activation

value and the average

10

1

2

5

2

2

9

-3

15

0

1

-1

2

Output 1

Output 2

Input 1

Input 2

2

1

1

3

0

-2

1

2

0

3

-2

1

3

1

2

5

2

2

9

-3

15

0

1

-1

2

Output 1

Output 2

Input 1

Input 2

2

1

1

3

0

-2

1

2

0

3

-2

1

3

③ Backward analysis
Backtrack from the slicing

criterion neuron

Approach: NNSlicer
Profiling

For each sample, observe an activation value 𝑦5 𝜉 = 𝑚𝑒𝑎𝑛$6!7 𝑦$5(𝜉)

Average neuron activation over the training dataset 𝑦5(𝐷) =
∑!∈# 9$(:)

|<|

Forward analysis

Quantify the reaction of a neuron 𝑛 for a data sample 𝜉 as a relative value
Δ𝑦5 𝜉 = 𝑦5 𝜉 − 𝑦5(𝐷)

Symbol Meaning

𝐷 Dataset

𝑦%# The 𝑖 th activation value of neuron 𝑛
𝜉 An input sample

11

Approach: NNSlicer
Backward analysis

A neural network can be viewed as a densely connected data flow graph
Recursively compute the contributions from back to front
⁃ Consider the neurons that are directly connected to the interested neurons
⁃ Set the neurons with non-zero contributions as the target neurons

12

Operation Usage Formula Local contribution 𝑐𝑜𝑛𝑡𝑟𝑖𝑏%

Weighted sum Convolutional layers
FC layers 𝑦 =E

%&!

$

𝑤%𝑥% 𝐶𝑂𝑁𝑇𝑅𝐼𝐵# × Δ𝑦 ×𝑤%Δ𝑥%

Average Average-pooling layers 𝑦 =
1
𝑘E
%&!

$

𝑥% 𝐶𝑂𝑁𝑇𝑅𝐼𝐵# × Δ𝑦 × Δ𝑥%

Maximum Max-pooling layers 𝑦 = max%'!$ 𝑥% 𝐶𝑂𝑁𝑇𝑅𝐼𝐵# × Δ𝑦 × Δ𝑥% if 𝑥% = 𝑦 else 0
Rectify ReLU activation 𝑦 = 𝑥 if 𝑥 > 0 else 0 𝐶𝑂𝑁𝑇𝑅𝐼𝐵# × Δ𝑦 × Δ𝑥 if 𝑥 > 0 else 0

Scale Batch normalization 𝑦 =
𝑥 − 𝜇
𝜎

𝐶𝑂𝑁𝑇𝑅𝐼𝐵# × Δ𝑦 × Δ𝑥

Approach: NNSlicer
Backward analysis

Only update the neurons with large local
contribution
⁃ Sort the local contributions
⁃ Find the maximum index 𝑗 so that

∑\6]# 𝑤\𝑥\ > 𝜃∑$6!# 𝑤$𝑥$

13

Approach: NNSlicer
GPU and multi-thread acceleration

GPU: Profiling and forward analysis of large batch
CPU: Backward analysis of small batch in multiple threads

Overhead

Model #Params
Profiling / Forward Backward

Single Batch Single Batch

LeNet 42784 3.0s 0.3s 0.5s 0.3s

ResNet10 300K 8.9s 0.4s 30.1s 3.0s

ResNet18 11M 9.6s 0.8s 543.0s 40.4s

Implementation

NNSlicer is implemented in Python with TensorFlow
Multi-thread computation is implemented by Ray (https://ray.io)

14

Applications: adversarial defense

Slice can be viewed as an abstraction of the decision process
The decision processes of normal examples and adversarial examples are different
Capture the mapping pattern between the slice and the output category

Normal example
(predicted as dog)

Normal example
(predicted as airplane)

Adversarial example
(predicted as dog)

Advantages
⁃ Do not need to modify the original model
⁃ Scale up to large state-of-the-art DNN models
⁃ Requires only the normal samples 15

Applications: network simplification and pruning

NNSlicer enables flexible pruning by focusing on a subset of output classes
Slicing criterion 𝐶 = 𝐼^, 𝑂 , 𝐼^ ⊂ 𝐼
Order synapses by the contribution and prune the less contributed synapses

Accuracy without fine-tuning Accuracy after fine-tuning

16

Applications: model protection

DNN models are valuable assets and model stealing threats the confidentiality
An adversary can reproduce the model with low cost
Select synapses in a similar way as pruning but to select the most crucial ones

Model stealing accuracy after protection
17

Limitations and Discussion

NNSlicer can be extended to other architectures such as RNN and GCN

DNN architecture

Static slicing, conditioned slicing, amorphous slicing …

Other slicing techniques

Slicing for an intermediate neuron is interesting

Slicing criterion

Is it possible to compose different slices to a new model?
Is it possible to slice certain attributes from a trained model?
Can NNSlicer be used to debug model or diagnose fragile weights?

More applications

18

Conclusion
Summary of our work

Apply slicing to DNNsWe propose an idea of dynamic slicing on deep networks and and
implement a tool called NNSlicer

A data-flow analysis process NNSlicer consists of a profiling phase, a forward analysis
phase and a backward analysis phase

Usefulness and effectiveness We develop three interesting applications with NNSlicer:
detect adversarial inputs, prune and simplify neural networks and selectively protect the
model from stealing. Empirical results demonstrate the usefulness and effectiveness

19

